Abstract

This paper presents the theoretical modeling and multiple-scale analysis of a novel piezoelectric energy harvester composed of a metal cantilever beam, piezoelectric films, and an axial preload spring at the moveable end. The harvester experiences mono- and bi-stable regimes as the stiffness of preload spring increases. The governing equations are derived with two high-order coupling terms induced by the axial motion. The literature shows that these high-order coupling terms lead to tedious calculations in the stability analysis of solutions. This work introduces an analytical strategy and the implementation of the multiple-scale method for the harvester in either the mono- or bi-stable status. Numerical simulations are performed to verify the analytical solutions. The influence of the electrical resistance, excitation level, and the spring pre-deformation on the voltage outputs and dynamics are investigated. The spring pre-deformation has a slight influence on the energy harvesting performance of the mono-stable system, but a large effect on that of the bi-stable system.

References

References
1.
Yang
,
Z.
, and
Zu
,
J.
,
2016
, “
Toward Harvesting Vibration Energy From Multiple Directions by a Nonlinear Compressive-Mode Piezoelectric Transducer
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1787
1791
. 10.1109/TMECH.2015.2459014
2.
Tang
,
L.
, and
Wang
,
J.
,
2017
, “
Size Effect of Tip Mass on Performance of Cantilevered Piezoelectric Energy Harvester with a Dynamic Magnifier
,”
Acta Mech.
,
228
(
11
), pp.
3997
4015
. 10.1007/s00707-017-1910-8
3.
Qian
,
F.
,
Zhou
,
W.
,
Kaluvan
,
S.
,
Zhang
,
H.
, and
Zuo
,
L.
,
2018
, “
Theoretical Modeling and Experimental Validation of a Torsional Piezoelectric Vibration Energy Harvesting System
,”
Smart. Mater. Struct.
,
27
(
4
), p.
045018
. 10.1088/1361-665X/aab160
4.
Abdelkefi
,
A.
,
Nayfeh
,
A. H.
, and
Hajj
,
M. R.
,
2012
, “
Global Nonlinear Distributed-Parameter Model of Parametrically Excited Piezoelectric Energy Harvesters
,”
Nonlinear Dyn.
,
67
(
2
), pp.
1147
1160
. 10.1007/s11071-011-0059-6
5.
Cao
,
Y.
,
Huang
,
H.
, and
He
,
W.
,
2019
, “
Energy Harvesting Characteristics of Preloaded Piezoelectric Beams
,”
J. Phys. D: Appl. Phys.
,
53
(
9
), p.
095501
. 10.1088/1361-6463/ab5a05
6.
Xu
,
J.
, and
Tang
,
J.
,
2015
, “
Multi-Directional Energy Harvesting by Piezoelectric Cantilever-Pendulum With Internal Resonance
,”
Appl. Phys. Lett.
,
107
(
21
), p.
213902
. 10.1063/1.4936607
7.
Hu
,
H.
,
Dai
,
L.
,
Chen
,
H.
,
Jiang
,
S.
,
Wang
,
H.
, and
Laude
,
V.
,
2017
, “
Two Methods to Broaden the Bandwidth of a Nonlinear Piezoelectric Bimorph Power Harvester
,”
ASME J. Vib. Acoust.
,
139
(
3
), p.
031008
. 10.1115/1.4035717
8.
Pan
,
D.
,
Ma
,
B.
, and
Dai
,
F.
,
2017
, “
Experimental Investigation of Broadband Energy Harvesting of a Bi-Stable Composite Piezoelectric Plate
,”
Smart. Mater. Struct.
,
26
(
3
), p.
035045
. 10.1088/1361-665X/aa5b41
9.
Abdelkefi
,
A.
, and
Barsallo
,
N.
,
2016
, “
Nonlinear Analysis and Power Improvement of Broadband Low-Frequency Piezomagnetoelastic Energy Harvesters
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
41
56
. 10.1007/s11071-015-2306-8
10.
Daqaq
,
M. F.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D. D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
. 10.1115/1.4026278
11.
Fang
,
F.
,
Xia
,
G.
, and
Wang
,
J.
,
2018
, “
Nonlinear Dynamic Analysis of Cantilevered Piezoelectric Energy Harvesters Under Simultaneous Parametric and External Excitations
,”
Acta Mech. Sin.
,
34
(
3
), pp.
561
577
. 10.1007/s10409-017-0743-y
12.
Yang
,
Z.
,
Zhu
,
Y.
, and
Zu
,
J.
,
2015
, “
Theoretical and Experimental Investigation of A Nonlinear Compressive-Mode Energy Harvester With High Power Output Under Weak Excitations
,”
Smart. Mater. Struct.
,
24
(
2
), p.
025028
. 10.1088/0964-1726/24/2/025028
13.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D. J.
, and
Chen
,
Y.
,
2015
, “
Chaos in the Fractionally Damped Broadband Piezoelectric Energy Generator
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1705
1719
. 10.1007/s11071-014-1320-6
14.
Zhou
,
S.
,
Cao
,
J.
,
Erturk
,
A.
, and
Lin
,
J.
,
2013
, “
Enhanced Broadband Piezoelectric Energy Harvesting Using Rotatable Magnets
,”
Appl. Phys. Lett.
,
102
(
17
), p.
173901
. 10.1063/1.4803445
15.
Haitao
,
L.
,
Weiyang
,
Q.
,
Chunbo
,
L.
,
Wangzheng
,
D.
, and
Zhiyong
,
Z.
,
2015
, “
Dynamics and Coherence Resonance of Tri-Stable Energy Harvesting System
,”
Smart. Mater. Struct.
,
25
(
1
), p.
015001
. 10.1088/0964-1726/25/1/015001
16.
Kim
,
P.
,
Son
,
D.
, and
Seok
,
J.
,
2016
, “
Triple-Well Potential With A Uniform Depth: Advantageous Aspects in Designing A Multi-Stable Energy Harvester
,”
Appl. Phys. Lett.
,
108
(
24
), p.
243902
. 10.1063/1.4954169
17.
Xu
,
C.
,
Liang
,
Z.
,
Ren
,
B.
,
Di
,
W.
,
Luo
,
H.
,
Wang
,
D.
,
Wang
,
K.
, and
Chen
,
Z.
,
2013
, “
Bi-stable Energy Harvesting Based on A Simply Supported Piezoelectric Buckled Beam
,”
J. Appl. Phys.
,
114
(
11
), p.
114507
. 10.1063/1.4821644
18.
Cottone
,
F.
,
Gammaiton
,
L.
,
Vocca
,
H.
,
Ferrari
,
M.
, and
Ferrari
,
V.
,
2012
, “
Piezoelectric Buckled Beams for Random Vibration Energy Harvesting
,”
Smart. Mater. Struct.
,
21
(
3
), p.
035021
. 10.1088/0964-1726/21/3/035021
19.
Cottone
,
F.
,
Vocca
,
H.
, and
Gammaitoni
,
L.
,
2009
, “
Nonlinear Energy Harvesting
,”
Phy. Rev. Lett.
,
102
(
8
), p.
080601
. 10.1103/PhysRevLett.102.080601
20.
Li
,
H.
, and
Qin
,
W.
,
2015
, “
Dynamics and Coherence Resonance of A Laminated Piezoelectric Beam For Energy Harvesting
,”
Nonlinear Dyn.
,
81
(
4
), pp.
1751
1757
. 10.1007/s11071-015-2104-3
21.
Tan
,
T.
,
Yan
,
Z.
,
Lei
,
H.
, and
Sun
,
W.
,
2017
, “
Geometric Nonlinear Distributed Parameter Model for Cantilever-Beam Piezoelectric Energy Harvesters and Structural Dimension Analysis for Galloping Mode
,”
J. Intell. Mater. Syst. Struct.
,
28
(
20
), pp.
3066
3078
. 10.1177/1045389X17704922
22.
Yan
,
Z.
, and
Hajj
,
M. R.
,
2017
, “
Nonlinear Performances of an Autoparametric Vibration-Based Piezoelastic Energy Harvester
,”
J. Intell. Mater. Syst. Struct.
,
28
(
2
), pp.
254
271
. 10.1177/1045389X16649450
23.
Firoozy
,
P.
,
Khadem
,
S. E.
, and
Pourkiaee
,
S. M.
,
2017
, “
Power Enhancement of Broadband Piezoelectric Energy Harvesting Using a Proof Mass and Nonlinearities in Curvature and Inertia
,”
Int. J. Mech. Sci.
,
133
, pp.
227
239
. 10.1016/j.ijmecsci.2017.08.048
24.
Qian
,
F.
,
Zhou
,
S.
, and
Zuo
,
L.
,
2020
, “
Approximate Solutions and Their Stability of a Broadband Piezoelectric Energy Harvester With a Tunable Potential Function
,”
Commun. Nonlinear Sci. Numer. Simul.
,
80
, p.
104984
. 10.1016/j.cnsns.2019.104984
25.
Chen
,
L. Q.
,
Jiang
,
W. A.
,
Panyam
,
M.
, and
Daqaq
,
M. F.
,
2016
, “
A Broadband Internally Resonant Vibratory Energy Harvester
,”
ASME J. Vib. Acoust.
,
138
(
6
), p.
061007
. 10.1115/1.4034253
26.
Masana
,
R.
, and
Daqaq
,
M. F.
,
2011
, “
Electromechanical Modeling and Nonlinear Analysis of Axially Loaded Energy Harvesters
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011007
. 10.1115/1.4002786
27.
Li
,
H. T.
,
Qin
,
W. Y.
,
Zu
,
J.
, and
Yang
,
Z.
,
2018
, “
Modeling and Experimental Validation of A Buckled Compressive-Mode Piezoelectric Energy Harvester
,”
Nonlinear Dyn.
,
92
(
4
), pp.
1
20
.
28.
Yang
,
Z.
,
Erturk
,
A.
, and
Zu
,
J.
,
2017
, “
On the Efficiency of Piezoelectric Energy Harvesters
,”
Extreme Mech. Lett.
,
15
, pp.
26
37
. 10.1016/j.eml.2017.05.002
29.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2017
,
Harnessing Bistable Structural Dynamics: For Vibration Control, Energy Harvesting and Sensing
,
John Wiley & Sons
,
Chichester, West Sussex, UK
, pp.
58
62
.
You do not currently have access to this content.