The response of conduction mode laser weld pool dimensions, specifically weld width, to a step change in power input has been modeled using two-dimensional heat flow analysis. The goal is to develop a simplified model suitable for feedback control. The weld pool geometry was approximated by a tear-drop shape. The workpiece thermal properties were assumed to be lumped and temperature-independent. The result was a first-order weld pool thermal model. A series of experiments was performed using different welding conditions (plate thickness, step power changes, and welding speeds) to validate the model. The weld pool image was recorded using a vision system and digitized. The process time constant as calculated by the model was of the order of 104 seconds. The response of the laser machine, estimated by the least squares method, was found to be about 102 seconds, which is much slower than that of the weld pool. Thus, within the constraints of the assumptions on which the model is based, the entire laser welding process is considered to be dominated by the laser machine dynamics. [S1087-1357(00)00502-5]

1.
Cao
,
Z. N.
,
Zhang
,
Y. M.
, and
Kovacevic
,
R.
,
1998
, “
Numerical Dynamic Analysis of Moving GTA Weld Pool
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
173
178
.
2.
Rosenthal
,
D.
,
1946
, “
The Theory of Moving Source of Heat and it’s Application to Metal Treatment
,”
Trans. ASME
,
68
, pp.
849
866
.
3.
Wells
,
A. A.
,
1952
, “
Heat Flow in Welding
,”
Weld. J. (Miami)
,
31
, pp.
263
266
.
4.
Adams
,
C. M.
,
1958
, “
Cooling Rates and Peak Temperature in Fusion Welding
,”
Weld. J. (Miami)
,
37
, No.
5
, pp.
210
215
.
5.
Cline
,
H. E.
, and
Anthony
,
T. R.
,
1977
, “
Heat Treating and Melting Material with a Scanning Laser or Electron Beam
,”
J. Appl. Phys.
,
48
, pp.
3895
3900
.
6.
Masubuchi, K., 1980, “Heat Flow in Weldments,” Analysis of Welded Structures, Pergamon Press, pp. 60–87.
7.
Nunes
, Jr.,
A. C.
,
1983
, “
An Extended Rosenthal Model
,”
Weld. J. (Miami)
,
62
, pp.
165s–170s
165s–170s
.
8.
Eagar, T. W., and Tsai, N.-S., 1984, “Temperature Fields Produced by Traveling Distributed Heat Sources” Weld. J. (Miami), 63.
9.
Friedman
,
E.
, and
Glickstein
,
S. S.
,
1976
, “
An Investigation of the Thermal Response of Stationary Gas Tungsten Arc Welding
,”
Weld. J. (Miami)
,
55
, pp.
408
420
.
10.
Hsu
,
Y. F.
,
Rubinsky
,
B.
, and
Mahin
,
K.
,
1986
, “
An Inverse Finite Element Method for the Analysis of Stationary Arc Welding Processes
,”
ASME J. Heat Transfer
,
108
, pp.
734
741
.
11.
Kannatey-Asibu
, Jr.,
E.
,
Kikuchi
,
N.
, and
Jallad
,
A. R.
,
1989
, “
Experimental Finite Element Analysis of Temperature Distribution During Arc Welding
,”
ASME J. Eng. Mater. Technol.
,
111
, pp.
9
18
.
12.
Kou
,
S.
,
Kanevsky
,
T.
, and
Fyfitch
,
S.
,
1982
, “
Welding Thin Plates of Aluminum Alloys-A Quantitative Heat-Flow Analysis
,”
Weld. J. (Miami)
,
61
, pp.
175
181
.
13.
Krutz
,
G. W.
, and
Segerlind
,
L. J.
,
1978
, “
Finite Element Analysis of Welded Structures
,”
Weld. J. (Miami)
,
57
, pp.
211
216
.
14.
Oreper
,
G. M.
, and
Szekely
,
J.
,
1984
, “
Heat and Fluid-Flow Phenomena in Weld Pools
,”
J. Fluid Mech.
,
147
, pp.
53
79
.
15.
Tekriwal
,
P.
, and
Mazumder
,
J.
,
1988
, “
Finite Element Analysis of Three-Dimensional Transient Heat Transfer in GMA Welding
,”
Weld. J. (Miami)
,
67
, pp.
150s–156s
150s–156s
.
16.
Fairbanks
,
R. H.
, and
Adams
,
C. M.
,
1964
, “
Laser Beam Fusion Welding
,”
Weld. J. (Miami)
,
43
, pp.
97s–102s
97s–102s
.
17.
Swift-Hook
,
D. T.
, and
Gick
,
A. E. F.
,
1973
, “
Penetration Welding with Lasers
,”
Weld. J. (Miami)
,
52
, pp.
492s–499s
492s–499s
.
18.
Akhter
,
R.
,
Davis
,
M.
,
Dowden
,
J.
,
Kapadia
,
P.
,
Ley
,
M.
, and
Steen
,
W. M.
,
1989
, “
A Method for Calculating the Fused Zone Profile of Laser Keyhole Welds
,”
J. Phys. D: Appl. Phys.
,
21
, pp.
23
28
.
19.
Mazumder
,
J.
, and
Steen
,
W. M.
,
1980
, “
Heat Transfer Model for cw Material Processing
,”
J. Appl. Phys.
,
51
, pp.
941
947
.
20.
Chan
,
C.
,
Mazumder
,
J.
, and
Chen
,
M. M.
,
1984
, “
A Two-Dimensional Transient Model for Convection in Laser Melted Pool
,”
Metall. Trans. A
,
15A
, pp.
2175
2184
.
21.
Metzbower
,
E. A.
,
1990
, “
Laser Beam Welding: Thermal Profiles and HAZ Hardness
,”
Weld. J. (Miami)
,
69
, pp.
272s–278s
272s–278s
.
22.
Dowden
,
J.
,
Postacioglu
,
N.
,
Davis
,
M.
, and
Kapadia
,
P.
,
1987
, “
A Keyhole Model in Penetration Welding with a Laser
,”
J. Phys. D: Appl. Phys.
,
20
, pp.
36
44
.
23.
Dowden
,
J.
,
Chang
,
W. S.
,
Kapadia
,
P.
, and
Strange
,
C.
,
1991
, “
Dynamics of the Vapor Flow in the Keyhole in Penetration Welding with a Laser at Medium Welding Speeds
,”
J. Phys. D: Appl. Phys.
,
24
, pp.
519
532
.
24.
Lankalapalli
,
K.
,
Tu
,
J. F.
, and
Gartner
,
M.
,
1996
, “
A Model for Estimating Penetration Depth of Laser Welding Processes
,”
J. Phys. D: Appl. Phys.
,
29
, pp.
1831
1841
.
25.
Paul
,
A.
, and
DebRoy
,
T.
,
1988
, “
Free Surface Flow and Heat Transfer in Conduction Mode Laser Welding
,”
Metall. Trans. B
,
19B
, pp.
851
858
.
26.
Zacharia
,
T.
,
David
,
S. A.
,
Vitek
,
J. M.
, and
Debroy
,
T.
,
1989
, “
Weld Pool Development During GTA and Laser Beam Welding of Type 304 Stainless Steel, Parts 1 and 2
,”
Weld. J. (Miami)
,
68
, pp.
499s–509s
499s–509s
and pp. 510s–519s.
27.
Kou
,
S.
, and
Wang
,
Y. H.
,
1986
, “
Weld Pool Convection and Its Effect
,”
Metall. Trans. A
,
17A
, pp.
2265
2270
.
28.
Xie
,
J.
, and
Kar
,
A.
,
1997
, “
Mathematical Modeling of Melting During Laser Materials Processing
,”
J. Appl. Phys.
,
81
, No.
7
, pp.
3015
3022
.
29.
DebRoy
,
T.
,
Basu
,
S.
, and
Mundra
,
K.
,
1991
, “
Probing Laser Induced Metal Vaporization by Gas Dynamics and Liquid Pool Transport Phenomena
,”
J. Appl. Phys.
,
70
, No.
3
, pp.
1313
1319
.
30.
Russo
,
A. J.
,
Akau
,
R. L.
, and
Jellison
,
J. L.
,
1990
, “
Thermocapillary Flow in Pulsed Laser Beam Weld Pools
,”
Weld. J. (Miami)
,
69
, pp.
23s–29s
23s–29s
.
31.
Cook, G. E., 1980, “Feedback Control of Process Variables in Arc Welding,” Joint Automated Control Conference, Vol. II, IEEE Publ. 80CH1580-0, pp. FA7-B-1-10, August.
32.
Hardt
,
D. E.
,
Garlow
,
D. A.
, and
Weinert
,
J. B.
,
1985
, “
A Model of Full Penetration Arc-Welding for Control System Design
,”
Trans. ASME
,
107
, pp.
40
46
.
33.
Doumanidis
,
C. C.
, and
Hardt
,
D. E.
,
1989
, “
A model for In-Process Control of Thermal Properties During Welding
,”
ASME J. Dyn. Syst., Meas., Control
,
111
, March, pp.
40
46
.
34.
Doumanidis
,
C. C.
, and
Hardt
,
D. E.
,
1991
, “
Multivariable Adaptive Control of Thermal Properties During Welding
,”
ASME J. Dyn. Syst., Meas., Control
,
113
, March, pp.
82
92
.
35.
Zhang, Y. M., Walcott, B. L. and Wu, L., 1992, “Dynamic Modeling Of Full Penetration Process In GTAW,” Proc. 1992 American Control Conference, Chicago, IL, pp. 3151–3155, 1992.
36.
Voelkel, D. D., and Mazumder, J., 1990, “Visualization and Dimensional Measurement of the Laser Weld Pool,” ICALEO, pp. 422–429.
37.
Kovacevic
,
R.
,
Zhang
,
Y. M.
, and
Ruan
,
S.
,
1995
, “
Sensing and Control of Weld Pool Geometry for Automated GTA Welding
,”
ASME J. Eng. Ind.
,
117
, pp.
210
222
.
38.
Liu
,
Y. N.
, and
Kannatey-Asibu
, Jr.,
E.
,
1998
, “
Finite Element Analysis of Heat Flow in Dual-Beam Laser Welded Tailored Blanks
,”
ASME J. Manuf. Sci. Eng.
,
120
, pp.
272
278
.
39.
Tsai, Fuu-Ren, 1998, “Vision Sensing, Modeling, and Control of Laser Weld Pool,” Ph. D. Dissertation, Mechanical Engineering Department, University of Michigan.
You do not currently have access to this content.