It is normal industrial practice to roll round edged flat wires from round circular wires using plain rolls. Although this is not a complex type of metal forming process, the internal deformation is highly three-dimensional. It is important to be able to determine the lateral spread, elongation and final profile precisely. In this paper, this process has been analyzed using an elastic-plastic finite element program. Firstly, algorithms for integrating the constitutive equations, i.e., return mapping algorithms, are evaluated to determine the most accurate technique. Then, the influences of friction and reduction in thickness on the deformation characteristics are investigated. The lateral spread and the radius of curvature of the free surface are quantitatively in reasonable agreement with those obtained from empirical formulas. The lateral spread increases with friction and with reduction. The variation of elongation in the roll bite is investigated in detail. It is found that the elongation is not uniformly distributed across the cross section. After passing the roll gap, the distribution is compensated by the elastic recovery of wire, otherwise it may cause edge waves.

1.
Pomp
,
A.
,
Ho¨hle
,
H.
, and
Lueg
,
W.
,
1938
, “
Die Breitung beim Flachwalzen von Runddraht aus Stahl
,”
Stahl Eisen
,
58
, pp.
937
943
, in German.
2.
Lueg
,
W.
, and
Treptow
,
K. H.
,
1954
, “
Das Breiten beim Flachwalzen von Runddraht und die Bestimmung der Querschnittsform
,”
Stahl Eisen
,
74
, pp.
881
888
, in German.
3.
Kuroda
,
M.
,
Gokyu
,
I.
, and
Yamamori
,
K.
,
1958
, “
A Study on the Flat Rolling of Round Wire
,”
J. Jpn. Inst. Met.
, ,
22
, pp.
576
580
, in Japanese.
4.
Pawelski
,
O.
,
1958
, “
Betriebliche Erfahrungen beim Kaltwalzen von Flachdraht
,”
Stahl Eisen
,
78
, pp.
382
383
, in German.
5.
Yanagimoto
,
S.
,
1961
, “
Deformation in Flat Rolling of Round Wire
,”
J. Jpn. Soc. Technol. Plast.
,
2
, pp.
135
142
, in Japanese.
6.
Iwamura
,
M.
,
1968
, “
Studies on the Flat Rolling of Nickel Wire
,”
J. Jpn. Soc. Technol. Plast.
,
9
, pp.
589
596
, in Japanese.
7.
Kobayashi, M. 1978b, “Flat Rolling of Wire,” Kinzoku sosei kakou no shinpo (Progress in metalforming), I. Gokyu, ed., pp. 240–252, Corona publisher (Tokyo), in Japanese.
8.
Utsunomiya
,
H.
,
Sakai
,
T.
,
Saito
,
Y.
, and
Matsuo
,
T.
,
1995
, “
Critical Current Density of Rolled Silver-Sheathed Bi(2223) Tapes
,”
Physica C
,
250
, pp.
340
348
.
9.
Tracey
,
D. M.
,
1976
, “
Finite Element Solutions for Crack-Tip Behavior in Small-Scale Yielding
,”
ASME J. Eng. Mater. Technol.
,
98
, pp.
146
151
.
10.
Pillinger
,
I.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
,
1986
, “
Use of a Mean-Normal Technique for Efficient and Numerically Stable Large-Strain Elastic-Plastic Finite-Element Solutions
,”
Int. J. Mech. Sci.
,
28
, pp.
23
29
.
11.
Krieg
,
R. D.
, and
Krieg
,
D. B.
,
1977
, “
Accuracies of Numerical Methods for the Elastic-Perfectly Plastic Model
,”
ASME J. Pressure Vessel Technol.
,
99
, pp.
510
515
.
12.
Shreyer
,
H. L.
,
Kulak
,
R. F.
, and
Kramer
,
J. M.
,
1979
, “
Accurate Numerical Solutions for Elastic-Plastic Models
,”
ASME J. Pressure Vessel Technol.
,
101
, pp.
226
234
.
13.
Rowe, G. W., Sturgess, C. E. N., Hartley, P., and Pillinger, I., 1991, Finite Element Plasticity and Metalforming Analysis, Cambridge University Press.
14.
Kobayashi
,
M.
,
1978a
, “
Influence of Rolling Conditions on Spreading in Flat Rolling of Round Wire
,”
J. Jpn. Soc. Technol. Plast.
,
19
, pp.
630
637
, in Japanese.
15.
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
,
1979
, “
Friction in Finite-Element Analyses of Metalforming Processes
,”
Int. J. Mech. Sci.
,
21
, pp.
301
311
.
16.
Hartley, P., Sturgess, C. E. N., Liu, C., and Rowe, G. W., 1988, “Mechanics of Metal Flow in Cold Rolling,” CAD/CAM & FEM in Metalworking, S. K. Ghosh and A. Niku-Lari, eds., Pergamon, pp. 35–46.
17.
Nagtegaal
,
J. C.
, and
De Jong
,
J. E.
,
1981
, “
Some Computational Aspects of Elastic-Plastic Large Strain Analyses
,”
Int. J. Numer. Methods Eng.
,
17
, pp.
15
41
.
18.
Ortiz
,
M.
, and
Popov
,
E. P.
,
1985
, “
Accuracy and Stability of Integration Algorithms for Elastoplastic Constitutive Relations
,”
Int. J. Numer. Methods Eng.
,
21
, pp.
1561
1576
.
19.
Nagtegaal
,
J. C.
, and
Rebelo
,
N.
,
1988
, “
On the Development of a General Purpose Finite Element Program for Analysis of Forming Processes
,”
Int. J. Numer. Methods Eng.
,
25
, pp.
113
131
.
20.
Gratacos
,
P.
,
Montmitonnet
,
P.
, and
Chenot
,
J. L.
,
1992
, “
An Integration Scheme for Prandtl-Reuss Elastoplastic Constitutive Equations
,”
Int. J. Numer. Methods Eng.
,
33
, pp.
943
961
.
21.
Chiou, J. M., Hall, F. R., Hartley, P., and Pillinger, I., 1995, “Elastic-Plastic Finite Element Modelling of Material Damage in Metal Forming,” Proc. 4th Int. Conf. Computational Plasticity, D. R. J. Owen and E. Onate, eds., pp. 1411–1422, Pineridge Press, Barcelona.
22.
Nayak
,
G. C.
, and
Zienkiewicz
,
O. C.
,
1972
, “
Elasto-plastic Stress Analysis. A Generalization for Various Constitutive Relations Including Softening
,”
Int. J. Numer. Methods Eng.
,
5
, pp.
113
135
.
23.
Pillinger, I., 1992, “The Elastic-Plastic Finite Element Method,” Numerical Modelling of Material Deformation Processes, P. Hartley et al., ed., Springer-Verlag, pp. 225–250.
24.
Hughes, T. J. R., 1985, “Numerical Implementations of Constitutive Models: Rate Independent Deviatoric Plasticity,” Theoretical Foundation for Large Scale Computations of Nonlinear Material Behavior, Northwestern Univ., Illinois.
You do not currently have access to this content.