A multiaxis adaptive slicing algorithm for multiaxis layered manufacturing, which can generate optimal slices to achieve deposition without support structures, is presented in this paper. Different from current adaptive slicing, this technique varies not only layer thickness but also in slicing/building direction. Aware of potential problems of previous research on slicing, the work in this paper focuses on innovative geometry reasoning and analysis tool-centroidal axis. Similar to medial axis, it contains geometry and topological information but is significantly computationally cheaper. Using a centroidal axis as a guide, the multiaxis slicing procedure is able to generate a three-dimensional layer or change slicing direction as needed automatically to build the part with better surface quality. This paper presents various examples to demonstrate the feasibility and advantages of centroidal axis and its usage in the multiaxis slicing process.

1.
Das
,
S.
,
Harlan
,
N.
,
Beaman
,
J.
, and
Bourell
,
D.
, 1996, “
Selective Laser Sintering of High Performance High Temperature Metals
,”
Proc. of Solid Freeform Fabrication
, University of Texas, Austin, TX, pp.
89
96
.
2.
Fodran
,
E.
,
Koch
,
M.
, and
Menon
,
U.
, 1996, “
Mechanical and Dimensional Characteristics of Fused Deposition Modeling Build Styles
,”
Solid Freeform Fabrication Proc.
, University of Texas, Austin, TX, pp.
419
442
.
3.
Jacobs
,
P. F.
, 1995, “
Stereolithography and Other RP&M Technologies: From Rapid Prototyping to Rapid Tooling
,”
Society of Manufacturing Engineers
.
4.
McAlea
,
K.
, and
Hejmadi
,
U.
, 1996, “
Selective Laser Sintering of Metal Molds: The RapidTool (TM) Process
,”
Solid Freeform Fabrication Proc.
, University of Texas, Austin, TX, pp.
97
104
.
5.
Pope
,
M. J.
,
Patterson
,
M. C. L.
,
Zimbeck
,
W.
, and
Fehrenbacher
,
M.
, 1997, “
Laminated Object Manufacturing of Si3N4 With Enhanced Properties
,”
Solid Freeform Fabrication Proc.
, University of Texas, Austin, TX, pp.
529
536
.
6.
Hofmeister
,
W.
,
Griffith
,
M.
,
Ensz
,
M.
, and
Smugeresky
,
J.
, 2001, “
Solidification in Direct Metal Deposition by LENS Processing
,”
JOM
1047-4838,
53
(
9
), pp.
30
34
.
7.
Laeng
,
J.
,
Stewart
,
J. G.
, and
Liou
,
F. W.
, 2000, “
Laser Metal Forming Processes and the Application in Rapid Prototyping of Metallic Parts
,”
Proc. of 2nd International Conference on Advanced Manufacturing Technology
, Johor Bahru, Malaysia, August, Elsevier, Amsterdam, the Netherlands, pp.
305
320
.
8.
Laeng
,
J.
,
Stewart
,
J. G.
, and
Liou
,
F. W.
, 2000, “
Laser Metal Forming Processes for Rapid Prototyping—A Review
,”
Int. J. Prod. Res.
0020-7543,
38
(
16
), pp.
3973
3996
.
9.
Pandey
,
P. M.
,
Reddy
,
N. V.
, and
Dhande
,
S. G.
, 2003, “
Slicing Procedures in Layered Manufacturing: A Review
,”
Rapid Prototyping J.
1355-2546,
9
(
5
), pp.
274
288
.
10.
Dolenc
,
A.
, and
Mäkelä
,
I.
, 1994, “
Slicing Procedures for Layered Manufacturing Techniques
,”
Comput.-Aided Des.
0010-4485,
26
, pp.
119
126
.
11.
Kulkarni
,
P.
, and
Dutta
,
D.
, 1999, “
An accurate slicing procedure for layered Manufacturing
,”
Comput.-Aided Des.
0010-4485,
28
(
9
) pp.
683
397
.
12.
Kumar
,
M.
, and
Choudhury
,
A. R.
, 2002, “
Adaptive Slicing With Cubic Path Approximation
,”
Rapid Prototyping J.
1355-2546,
8
(
4
), pp.
224
232
.
13.
Ma
,
W.
, and
He
,
P.
, 1999, “
An Adaptive Slicing and Selective Hatching Strategy for Layered Manufacturing
,”
J. Mater. Process. Technol.
0924-0136,
89
, pp.
191
197
.
14.
Tata
,
K.
,
Fadel
,
G.
,
Bagchi
,
A.
, and
Aziz
,
N.
, 1998, “
Efficient Slicing for Layered Manufacturing
,”
Rapid Prototyping J.
1355-2546,
4
(
4
), pp.
151
167
.
15.
Luo
,
R. C.
,
Chang
,
Y. C.
, and
Tzou
,
J. H.
, 2001, “
The Development of a New Adaptive Slicing Algorithm for Layered Manufacturing System
,”
Proc. of 2001 IEEE International Conference on Robotics & Automation
, Seoul, May 21–26, IEEE, New York, pp.
1334
1339
.
16.
Yang
,
Y.
,
Fuh
,
J. Y. H.
,
Loh
,
H. T.
, and
Wong
,
Y. S.
, 2003, “
A Volumetric Difference-Based Adaptive Slicing and Deposition Method for Layered Manufacturing
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
125
, pp.
586
594
.
17.
Singh
,
P.
, and
Dutta
,
D.
, 2001, “
Multi-Direction Slicing for Layered Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
1530-9827,
1
, pp.
129
142
.
18.
Zhang
,
J.
,
Ruan
,
J.
, and
Liou
,
F. W.
, 2000, “
Process Planning for a Five-Axis Hybrid Rapid Manufacturing Process
,”
Proc. of 11th Annual Solid Freeform Fabrication Symposium
, Austin, August pp.
243
250
.
19.
Zhang
,
J.
, and
Liou
,
F. W.
, 2001, “
Adaptive Slicing for a Five-Axis Laser Aided Manufacturing Process
,”
Proc. of 2001 ASME Design Automation Conference
, Pittsburgh, Sept. 9–12, ASME, New York, pp.
1339
1348
.
20.
O’Rourke
,
J.
, 1998,
Computational Geometry in C
, 2nd ed.,
Cambridge University Press
, Cambridge, England.
21.
Ma
,
W.-C.
,
Wu
,
F.-C.
, and
Ming
,
O.
, 2003, “
Skeleton Extraction of 3D Objects With Radial Basis Function
,”
Proc. of Shape Modeling International
, IEEE, Seoul, Korea, pp.
207
215
.
22.
Naf
,
M.
,
Szekely
,
G.
,
Kikinis
,
R.
,
Shenton
,
M.
, and
Kubler
,
O.
, 1997, “
3D Voronoi Skeletons and Their Usage for the Characterization and Recognition of 3D Organ Shape
,”
Comput. Vis. Image Underst.
1077-3142,
66
(
2
), pp.
147
162
.
23.
Sampl
,
P.
, 2001, “
Medial Axis Construction in Three Dimensions and its Application to Mesh Generation
,”
Eng. Comput.
0177-0667,
17
, pp.
234
248
.
24.
Troulis
,
M.
,
Everett
,
P.
,
Seldin
,
E.
,
Kikinis
,
R.
, and
Kaban
,
L.
, 2002, “
Development of a three-dimensional treatment planning system based on computed tomographic data
,”
J. Oral Maxillofac Surg.
0278-2391,
31
(
4
), pp.
349
357
.
25.
Culver
,
T.
,
Keyser
,
J.
, and
Manocha
,
D.
, 2004, “
Exact Computation of the Medial Axis of a Polyhedron
,”
Comput. Aided Geom. Des.
0167-8396,
21
, pp.
65
98
.
26.
Dey
,
T. K.
, and
Zhao
,
W.
, 2004, “
Approximate Medial Axis as a Voroni Subcomplex
,”
Comput.-Aided Des.
0010-4485,
36
, pp.
195
202
.
27.
Ruan
,
J.
,
Eiamsa-ard
,
K.
,
Zhang
,
J.
, and
Liou
,
F. W.
, 2002, “
Automatic Process Planning of A Multi-Axis Hybrid Manufacturing System
,”
Proc. of DETC’02
, Sept. 29–Oct. 2, Montreal, Canada, ASME, New York, Paper No. DAC-34138.
28.
Picasso
,
M.
, et al.
, 1994, “
A Simple but Realistic Model of Laser Cladding
,”
Metall. Mater. Trans. B
1073-5615,
25
, pp.
281
291
.
29.
Ruan
,
J.
,
Eiamsa-ard
,
K.
,
Zhang
,
J.
, and
Liou
,
F. W.
, 2005, “
Automatic Multi-Axis Slicing Based on Centroidal Axis Computation
,”
Proc. of DETC’05
, Long Beach, CA, ASME, New York, pp.
383
394
.
You do not currently have access to this content.