Hemming is a manufacturing process of folding a panel onto itself or another sheet. Quality of hemming is characterized by geometry and formability. This paper presents a response surface study of three-dimensional (3D) curved-surface-curved-edge hemming of an aluminum alloy, AA6111-T4, using finite-element (FE) analysis. Solid elements and explicit FE solver are used for simulations of flanging, pre- and final hemming, and shell elements with implicit solver are deployed for springback prediction. A novel procedure called “solid-to-shell mapping” is developed to bridge the solid elements with the shell elements. Verified to be accurate and efficient, the model is utilized in a central composite design to quantitatively explore the relationships between certain key process variables and the hem dimensional quality and formability. The most significant variables are identified as: (i) prehemming angle on roll-in/roll-out; (ii) nominal surface curvature on sheet springback; and (iii) initial sheet strain and flanging die radius on the maximum hemline surface strain of the produced hem. These results provide insights for process parameter selections in designing and optimizing 3D hems under material formability constraints.

1.
Zhang
,
G.
,
Hu
,
S. J.
, and
Wu
,
X.
, 2003, “
Numerical Analysis and Optimization of Hemming Processes
,”
J. Manuf. Process.
1526-6125,
5
(
1
), pp.
87
96
.
2.
Livatyali
,
H.
,
Muderrisoglu
,
A.
,
Ahmetoglu
,
M. A.
,
Akgerman
,
N.
,
Kinzel
,
G. L.
, and
Altan
,
T.
, 2000, “
Improvement of Hem Quality by Optimizing Flanging and Pre-Hemming Operations Using Computer Aided Die Design
,”
J. Mater. Process. Technol.
0924-0136,
98
, pp.
41
52
.
3.
Zhang
,
G.
,
Hao
,
H.
,
Wu
,
X.
,
Hu
,
S. J.
,
Harper
,
K.
, and
Faitel
,
W.
, 2000, “
An Experimental Investigation of Curved Surface-Straight Edge Hemming
,”
J. Manuf. Process.
1526-6125,
2
(
4
), pp.
241
246
.
4.
Muderrisoglu
,
A.
,
Murata
,
M.
,
Ahmetoglu
,
M. A.
,
Kinzel
,
G.
, and
Altan
,
T.
, 1996, “
Bending, Flanging and Hemming of Aluminum Sheet—An Experimental Study
,”
J. Mater. Process. Technol.
0924-0136,
59
, pp.
10
17
.
5.
Lin
,
G.
,
Iyer
,
K.
,
Hu
,
S. J.
,
Cai
,
W.
, and
Marin
,
S. P.
, 2005, “
A Computational Design-of-Experiments Study of Hemming Processes for Automotive Aluminum Alloys
,”
Proc. Inst. Mech. Eng., Part B
0954-4054 ,
219
(
10
), pp.
711
722
.
6.
Sarkar
,
J.
,
Kutty
,
T. R. G.
,
Wilkinson
,
D. S.
,
Embury
,
J. D.
, and
Lloyd
,
D. J.
, 2000, “
Characterization of Bendability in Automotive Aluminum Alloy Sheets
,”
Mater. Sci. Forum
0255-5476,
331–337
, pp.
583
588
.
7.
Dao
,
M.
, and
Li
,
M.
, 2001, “
A Micromechanics Study on Strain-Localization-Induced Fracture Initiation in Bending Using Crystal Plasticity Models
,”
Philos. Mag. A
0141-8610,
81
(
8
), pp.
1997
2020
.
8.
Svensson
,
M.
, 1998, “
Hemming simulation
,”
Proceedings of the NUMIFORM ’98
, pp.
925
931
.
9.
Svensson
,
M.
, and
Mattiasson
,
K.
, 2002, “
Three-Dimensional Simulation of Hemming With the Explicit FE-Method
,”
J. Mater. Process. Technol.
0924-0136,
128
, pp.
142
154
.
10.
Lin
,
G.
,
Koc
,
M.
,
Hu
,
S. J.
, and
Cai
,
W.
, 2004, “
Three-Dimensional Numerical Simulations of Curved Edge-Curved Surface Hemming of Aluminum Alloy
,”
Proceedings of IMECE: 2004 ASME International Mechanical Engineering Congress
, Anaheim, CA.
11.
Hibbitt, Karlsson and Sorenson Inc.
, 2003, ABAQUS Analysis User’s Manual, Vol. 6.4, Providence, RI.
12.
Zhang
,
G.
,
Wu
,
X.
, and
Hu
,
S. J.
, 2001, “
A Study on Fundamental Mechanisms of Warp and Recoil in Hemming
,”
ASME J. Eng. Mater. Technol.
0094-4289,
123
(
4
), pp.
436
441
.
13.
Clift
,
S. E.
,
Hartley
,
P.
,
Sturgess
,
C. E. N.
, and
Rowe
,
G. W.
, 1990, “
Fracture Prediction in Plastic Deformation Processes
,”
Int. J. Mech. Sci.
0020-7403,
32
(
1
), pp.
1
17
.
14.
Bao
,
Y.
, and
Wierzbicki
,
T.
, 2004, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
(
3
), pp.
314
324
.
15.
Freudenthal
,
A. M.
, 1950,
The Inelastic Behavior of Engineering Materials and Structures
,
Wiley
, New York.
16.
McClintock
,
F.
, 1968, “
A Criterion for Ductile Fracture by the Growth of Holes
,”
ASME J. Appl. Mech.
0021-8936,
35
, pp.
363
376
.
17.
Cockroft
,
M. G.
, and
Latham
,
D. J.
, 1968, “
Ductility and the Workability of Metals
,”
J. Inst. Met.
0020-2975,
56
, pp.
33
39
.
18.
Rice
,
J.
, and
Tracey
,
D.
, 1969, “
On Ductile Enlargement of Voids in Triaxial Stress Fields
,”
J. Mech. Phys. Solids
0022-5096,
17
(
3
), pp.
201
217
.
19.
Ghosh
,
A. K.
, 1976, “
A Criterion for Ductile Fracture in Sheets under Biaxial Loading
,”
Metall. Trans. A
0360-2133,
7A
(
4
), pp.
523
533
.
20.
Gurson
,
A. L.
, 1977, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I - Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
0094-4289,
99
(
1
), pp.
2
15
.
21.
Swillo
,
S. J.
,
Iyer
,
K.
, and
Hu
,
S. J.
, 2006, “
Angled Line Method for Measuring Continuously Distributed Strain in Sheet Bending
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
, pp.
651
658
.
22.
Hamada
,
M.
, and
Wu
,
C. F. J.
, 2000,
Experiments: Planning, Analysis and Parameter Design
,
Wiley
, New York.
You do not currently have access to this content.