This paper presents a comprehensive dynamic model that simulates infeed centerless grinding processes and predicts their instability-related characteristics. The new model has the unique ability of accurately predicting the coupled chatter and lobing process of a multi-degree of freedom and two-dimensional centerless grinding system by considering its critical issues. First, the model considers the complete two-dimensional kinematics, dynamics, surface profiles, and the geometrical interactions of the workpiece with the grinding wheel, regulating wheel, and supporting blade. Second, a two-dimensional distributed grinding force model along the contact length is adopted and modified for centerless grinding processes as a function of normalized uncut chip thickness. The forces of the work holding system are determined by balancing the grinding force and accordingly the work holding instability can be identified as well. Third, a two-dimensional contact deformation model under the condition of general surface profiles or pressure distributions is developed for the contacts of the workpiece with the grinding wheel, regulating wheel, and supporting blade. The new model is validated by comparing the predicted chatter and lobing occurrences with experimental results.

1.
Inasaki
,
I.
,
Karpuschewski
,
B.
, and
Lee
,
H.-S.
, 2001, “
Grinding Chatter—Origin and Suppression
,”
CIRP Ann.
0007-8506,
50
(
2
), pp.
515
534
.
2.
Hahn
,
R. S.
, 1954, “
On the Theory of Regenerative Chatter in Precision-Grinding Operations
,”
Trans. ASME
0097-6822,
76
(
1
), pp.
593
597
.
3.
Snoeys
,
R.
, and
Brown
,
D.
, 1969, “
Dominating Parameters in Grinding Wheel and Workpiece Regenerative Chatter
,”
Proceeding 10th Int. Machine Tool Design and Research Conference
, Birmingham, UK, September, pp.
325
348
.
4.
Bartalucci
,
B.
, and
Lisini
,
G. G.
, 1969, “
Grinding Process Instability
,”
ASME J. Eng. Ind.
0022-0817,
91
(
3
), pp.
597
606
.
5.
Thompson
,
R. A.
, 1977, “
On the Doubly Regenerative Stability of a Grinder: The Combined Effect of Wheel and Workpiece Speed
,”
ASME J. Eng. Ind.
0022-0817,
99
, pp.
237
241
.
6.
Srinivasan
,
K.
, 1982, “
Application of the Regeneration Spectrum Method to Wheel Regenerative Chatter in Grinding
,”
ASME J. Eng. Ind.
0022-0817,
104
, pp.
46
54
.
7.
Thompson
,
R. A.
, 1986, “
On the Doubly Regenerative Stability of a Grinder: The Mathematical Analysis of Chatter Growth
,”
ASME J. Eng. Ind.
0022-0817,
108
, pp.
83
92
.
8.
Matsubara
,
T.
,
Mizumoto
,
H.
, and
Yamamoto
,
H.
, 1987, “
Experimental Analysis of Work Regenerative Chatter in Plunge Grinding
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
21
(
1
), pp.
33
37
.
9.
Liao
,
Y. S.
, and
Shiang
,
L. C.
, 1991, “
Computer Simulation of Self-Excited and Forced Vibrations in the External Cylindrical Plunge Grinding Process
,”
ASME J. Eng. Ind.
0022-0817,
113
, pp.
297
304
.
10.
Biera
,
J.
,
Vinolas
,
J.
, and
Nieto
,
F. J.
, 1997, “
Time Domain Dynamic Modeling of the External Plunge Grinding Process
,”
Int. J. Mach. Tools Manuf.
0890-6955,
37
, pp.
1555
1572
.
11.
Li
,
H.
, and
Shin
,
Y. C.
, 2006, “
A Time-domain Dynamic Model for Chatter Prediction of Cylindrical Plunge Grinding Processes
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
404
415
.
12.
Gurney
,
J. P.
, 1964, “
An Analysis of Centerless Grinding
,”
ASME J. Eng. Ind.
0022-0817,
86
, pp.
163
174
.
13.
Furukawa
,
Y.
,
Miyashita
,
M.
, and
Shiozaki
,
S.
, 1970, “
Chatter Vibration in Centerless Grinding
,”
Trans. Jpn. Soc. Mech. Eng.
0375-9466,
36
, pp.
1274
1283
.
14.
Furukawa
,
Y.
,
Miyashita
,
M.
, and
Shiozaki
,
S.
, 1971, “
Vibration Anaysis and Work-Rounding Mechanism in Centerless Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
11
, pp.
145
175
.
15.
Miyashita
,
M.
, 1969, “
Chatter Vibration in Centerless Grinding
,”
Bull. Jpn. Soc. Precis. Eng.
0582-4206,
3
(
3
), pp.
53
58
.
16.
Miyashita
,
M.
,
Hashimoto
,
F.
, and
Kanai
,
A.
, 1982, “
Diagram for Selecting Chatter Free Conditions of Centerless Grinding
,”
CIRP Ann.
0007-8506,
31
(
1
), pp.
221
223
.
17.
Bueno
,
R.
,
Zatarain
,
M.
, and
Alguinagalde
,
J. M.
, 1990, “
Geometric and Dynamic Stability in Centerless Grinding
,”
CIRP Ann.
0007-8506,
39
(
1
), pp.
395
398
.
18.
Hashimoto
,
F.
,
Zhou
,
F.
,
Lahoti
,
G. D.
, and
Miyashita
,
M.
, 2000, “
Stability Diagram for Chatter Free Centerless Grinding and its Application in Machine Development
,”
CIRP Ann.
0007-8506,
49
(
1
), pp.
225
230
.
19.
Altintas
,
Y.
, and
Weck
,
M.
, 2004, “
Chatter Stability of Metal Cutting and Grinding
,”
CIRP Ann.
0007-8506,
53
(
2
), pp.
619
642
.
20.
Li
,
H.
, and
Shin
,
Y. C.
, 2006, “
Surface Grinding and Wheel Regenerative Chatter
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
2
), pp.
393
403
.
21.
Rowe
,
W. B.
,
Miyashita
,
M.
, and
Koenig
,
W.
, 1989, “
Centerless Grinding Research and its Applications in Advanced Technology
,”
CIRP Ann.
0007-8506,
38
(
2
), pp.
617
625
.
22.
Rowe
,
W. B.
, and
Richards
,
D. L.
, 1972, “
Geometric Instability Charts for the Centerless Grinding Process
,”
J. Mech. Eng. Sci.
0022-2542,
14
(
2
), pp.
155
158
.
23.
Zhou
,
S. S.
,
Gartner
,
J. R.
, and
Howes
,
T. D.
, 1996, “
On the Relationship between Setup Parameters and Lobing Behavior in Centerless Grinding
,”
CIRP Ann.
0007-8506,
45
(
1
), pp.
341
346
.
24.
Lizarralde
,
R.
,
Barrenetxea
,
D.
,
Gallego
,
I.
, and
Marquinez
,
J. I.
, 2005, “
Practical Application of New Simulation Methods for the Elimination of Geometric Instabilities in Centerless Grinding
,”
CIRP Ann.
0007-8506,
54
(
1
), pp.
273
276
.
25.
Hashimoto
,
F.
, and
Lahoti
,
G. D.
, 2004, “
Optimization of Set-up Conditions for Stability of the Centerless Grinding Process
,”
CIRP Ann.
0007-8506,
50
(
1
), pp.
271
274
.
26.
Zhou
,
S. S.
, and
Petrosky
,
G. C.
, 1997, “
Improving Workpiece Roundness through Centerless Grinding Cycle Optimization
,”
CIRP Ann.
0007-8506,
46
(
1
), pp.
217
222
.
27.
Rowe
,
W. B.
, and
Barash
,
M. M.
, 1964, “
Computer Method for Investigating the Inherent Accuracy of Centerless Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
4
, pp.
91
116
.
28.
Rowe
,
W. B.
,
Barash
,
M. M.
, and
Koenigsberger
,
F.
, 1965, “
Some Roundness Characteristics of Centerless Grinding
,”
Int. J. Mach. Tool Des. Res.
0020-7357,
5
, pp.
203
215
.
29.
Hashimoto
,
F.
,
Lahoti
,
G. D.
, and
Miyashita
,
M.
, 1998, “
Safe Operations and Friction Characteristics of Regulating Wheel in Centerless Grinding
,”
CIRP Ann.
0007-8506,
47
(
1
), pp.
281
286
.
30.
Hashimoto
,
F.
, 1999, “
Effect of Friction and Wear Characteristics of Regulating Wheel on Centerless Grinding
,”
Proceedings 3rd International Machining & Grinding Conference
, Cincinnati, OH, October 4–7, SME MR99-226, pp.
1
18
.
31.
Shin
,
Y. C.
, and
Waters
,
A. J.
, 1994, “
Face Milling Process Modeling with Structural Nonlinearity
,”
Trans. NAMRI/SME
1047-3025,
22
, pp.
157
163
.
32.
Li
,
H.
, and
Shin
,
Y. C.
, 2006, “
A Comprehensive Dynamic End Milling Simulation Model
,”
ASME J. Manuf. Sci. Eng.
1087-1357,
128
(
1
), pp.
86
95
.
33.
Choi
,
T.
, and
Shin
,
Y. C.
, 2007, “
Generalized Intelligent Grinding Advisory System
,”
Int. J. Prod. Res.
0020-7543,
45
(
8
), pp
1899
1932
.
34.
Peters
,
J.
, 1984, “
Contribution of CIRP Research to Industrial Problem in Grinding
,”
CIRP Ann.
0007-8506,
33
(
2
), pp.
451
468
.
35.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
, pp.
144
152
.
36.
Brown
,
R. H.
,
Satio
,
K.
, and
Shaw
,
M. C.
, 1971, “
Local Elastic Deflections in Grinding
,”
CIRP Ann.
0007-8506,
19
(
1
), pp.
105
113
.
You do not currently have access to this content.