A method of simulating ink-particle flight for industrial, continuous inkjet printers (CIJPs) was developed to clarify the factors that influence print distortion. Print distortion is produced by aerodynamic and electric interference between the ink-particles flying from the nozzle onto the print target. The necessary functions to do this, such as the calculation of electrostatic force in the electric field between the electrodes, Coulomb's force from other charged ink-particles, and the drag force in the inkjet stream for many flying ink-particles were added to a Lagrangian method in the software to analyze the fluid dynamics that was used in the simulations. The trajectories of the ink particles flying from the nozzle onto the print target and the air flow caused by them were simultaneously calculated in the simulations. The results from simulations for the velocities and trajectories of the flying ink particles were compared with the experimental ones obtained with a high-speed camera. These simulation results were in good agreement with the experimental ones, and the developed simulation helps to clarify the factors that influence print distortion and to create algorithms that decrease it.

References

1.
Thomson
,
W.
(Lord Kelvin),
1867
, “
Receiving or Recording Instruments for Electric Telegraphs
,” G.B. Patent No. 2147.
2.
Sweet
,
R.
,
1963
, “
Fluid Droplet Recorder
,” U.S. Patent No. 3,596,275.
3.
Hertz
,
C. H.
, and
Simonsson
,
S. I.
,
1966
, “
Ink-Jet Recorder
,” U.S. Patent No. 3,416,153.
4.
Matsumoto
,
S.
,
Inoue
,
T.
,
Matsuno
,
J.
, and
Sano
,
K.
,
1996
, “
Flight Stability of Droplets in an Electrostatic Ink-Jet Printer
,”
Trans. Jpn. Soc. Mech. Eng. C
,
62
(
596
), pp.
1467
1472
.10.1299/kikaic.62.1467
5.
Inoue
,
T.
,
Sato
,
K.
,
Takizawa
,
Y.
, and
Miyao
,
A.
,
2006
, “
Ink Concentration Control System for Continuous Ink Jet Printers
,”
Trans. Jpn. Soc. Mech. Eng. C
,
72
(
718
), pp.
1813
1816
.10.1299/kikaic.72.1813
6.
Okano
,
M.
,
Inoue
,
T.
,
Takizawa
,
Y.
,
Matsuda
,
T.
, and
Miyao
,
A.
,
2010
, “
A New Nozzle for Continuous Inkjet Printers
,”
J. Adv. Mech. Des. Syst. Manuf.
,
4
(
4
), pp.
764
772
.10.1299/jamdsm.4.764
7.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
10
, pp.
4
13
.10.1112/plms/s1-10.1.4
8.
Weber
,
C.
,
1931
, “
Zum Zerfall eines Flussigkeitsstrahles
,”
Z. Angew. Math. Mech.
,
11
, pp.
136
159
.10.1002/zamm.19310110207
9.
Desai
,
S.
, and
Lovell
,
M.
,
2009
, “
Computational Fluid Dynamics Analysis of a Direct Write Manufacturing Process
,”
Int. J. Nanomanuf.
,
3
(
3
), pp.
171
187
.10.1504/IJNM.2009.027424
10.
Wang
,
W.
,
Herran
,
C. L.
,
Coutris
,
N.
,
Huang
,
Y.
,
Mironov
,
V.
, and
Markwald
,
R.
,
2013
, “
Methodology for the Evaluation of Double-Layered Microcapsule Formability Zone in Compound Nozzle Jetting Based on Growth Rate Ratio
,”
ASME J. Fluids Eng.
,
135
, p.
051203
.10.1115/1.4023646
11.
Chang
,
H.-J.
,
Tsai
,
M. H.
, and
Hwang
,
W. S.
,
2012
, “
The Simulation of Micro Droplet Behavior of Molten Lead-Free Solder in Inkjet Printing Process and Its Experimental Validation
,”
Appl. Math. Model.
,
36
(
7
), pp.
3067
3079
.10.1016/j.apm.2011.09.094
12.
Suzuki
,
M.
, and
Asano
,
K.
,
1979
, “
A Mathematical Model of Droplet Charging in Ink-Jet Printers
,”
J. Phys. D: Appl. Phys.
,
12
, pp.
529
537
.10.1088/0022-3727/12/4/010
13.
Filmore
,
G. L.
,
Buehner
,
W. L.
, and
West
,
D. L.
,
1997
, “
Drop Charging and Deflection in an Electrostatic Ink Jet Printer
,”
IBM J. Res. Dev.
,
21
, pp.
37
47
.10.1147/rd.211.0037
14.
Ikegawa
,
M.
, and
Azuma
,
H.
,
2004
, “
Droplet Behaviors on Substrates in Thin Film Formation Using Ink-Jet Printing
,”
ASME Int. J. Ser. B
,
47
(
3
), pp.
490
496
.10.1299/jsmeb.47.490
15.
Lee
,
H. C.
,
1977
, “
Boundary Layer around a Liquid Jet
,”
IBM J. Res. Dev.
,
21
, pp.
48
51
.10.1147/rd.211.0048
16.
Hendriks
,
F.
,
1980
, “
Aerodynamics of Ink Jet Printing
,”
J. Appl. Photogr. Eng.
,
6
(
3
), pp.
83
86
.
17.
Watanabe
,
K.
,
Che
,
F.
, and
Muto
,
M.
,
1998
, “
Study on Coalescence of Droplets of an Ink Jet
,”
Trans. Jpn. Soc. Mech. Eng. B
,
64
(
619
), pp.
754
759
.10.1299/kikaib.64.754
18.
STAR-CD, “
CD-Adapco
,” http://www.cd-adapco.com
19.
Beard
,
K. V.
, and
Pruppacher
,
H. R.
,
1969
, “
A Determination of the Terminal Velocity and Drag of a Small Water Drops by Means of a Wind Tunnel
,”
J. Atmos. Sci.
,
26
, pp.
1066
1072
.10.1175/1520-0469(1969)026<1066:ADOTTV>2.0.CO;2
20.
Tsuji
,
Y.
,
Morikawa
,
Y.
,
Terashima
,
K. T.
, and
Ninomiya
,
H.
,
1981
, “
Experiment of Fluid-Dynamic Interaction Between Two Spheres
,”
Trans. Jpn. Soc. Mech. Eng. B
,
47
(
423
), pp.
2103
2110
.10.1299/kikaib.47.2103
21.
Tsuji
,
Y.
,
Morikawa
,
Y.
, and
Terashima
,
K.
,
1982
, “
Fluid-Dynamic Interaction Between Two Spheres
,”
Int. J. Multiphase Flow
,
8
(
1
), pp.
71
82
.10.1016/0301-9322(82)90008-8
22.
Lee
,
K. C.
,
1979
, “
Aerodynamic Interaction Between Two Spheres at Reynolds Numbers Around 104
,”
Aeronaut. Q.
,
30
, pp.
371
385
.
23.
Zhu
,
C.
,
Liang
,
S.-C.
, and
Fan
,
L.-S.
,
1994
, “
Particle Wake Effects on the Drag Force of an Interactive Particle
,”
Int. Multiphase Flow
,
20
(
1
), pp.
117
129
.10.1016/0301-9322(94)90009-4
24.
Chen
,
R. C.
, and
Wu
,
J. L.
,
2000
, “
The Flow Characteristics Between Two Interactive Spheres
,”
Chem. Eng. Sci.
,
55
, pp.
1143
1158
.10.1016/S0009-2509(99)00390-5
You do not currently have access to this content.