The single explicit analysis using time-dependent damping (SEATD) technique for laser shock peening (LSP) simulation employs variable damping to relax the excited model between laser shots, thus distinguishing it from conventional optimum constant damping methods. Dynamic relaxation (DR) is the well-established conventional technique that mathematically identifies the optimum constant damping coefficient and incremental time-step that guarantees stability and convergence while damping all mode shapes uniformly when bringing a model to quasi-static equilibrium. Examined in this research is a new systematic procedure to strive for a more effective, time-dependent variable damping profile for general LSP configurations and boundary conditions, based on excited modal parameters of a given laser-shocked system. The effects of increasing the number of mode shapes and selecting modes by contributed effective masses are studied, and a procedure to identify the most efficient variable damping profile is designed. Two different simulation cases are studied. It is found that the computational time is reduced by up to 25% (62.5 min) for just five laser shots using the presented variable damping method versus conventional optimum constant damping. Since LSP typically involved hundreds of shots, the accumulated savings in computation time during prediction of desired process parameters is significant.

References

1.
White
,
R. M.
,
1963
, “
Elastic Wave Generation by Electron Bombardment or Electromagnetic Wave Absorption
,”
J. Appl. Phys.
,
34
(
7
), p.
2123
.
2.
Anderholm
,
N. C.
,
1970
, “
Laser Generated Stress Waves
,”
Appl. Phys. Lett.
,
16
(
3
), p.
113
.
3.
See
,
D. W.
,
Dulaney
,
J. L.
,
Clauer
,
A. H.
, and
Tenaglia
,
R. D.
,
2002
, “
The Air Force Manufacturing Technology Laser Peening Initiative
,”
Surf. Eng.
,
18
(
1
), pp.
32
36
.
4.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Laser Shock Peening for Suppression of Hydrogen-Induced Martensitic Transformation in Stress Corrosion Cracking
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081015
.
5.
Brandal
,
G.
, and
Yao
,
Y. L.
,
2017
, “
Material Influence on Mitigation of Stress Corrosion Cracking Via Laser Shock Peening
,”
ASME J. Manuf. Sci. Eng.
,
139
(
1
), p.
011002
.
6.
Zhang
,
Z.
,
Hu
,
Y.
, and
Yao
,
Z.
,
2017
, “
Shape Prediction for Laser Peen Forming of Fiber Metal Laminates by Experimentally Determined Eigenstrain
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041004
.
7.
Ding
,
K.
,
2003
, “
Three-Dimensional Dynamic Finite Element Analysis of Multiple Laser Shock Peening Processes
,”
Surf. Eng.
,
19
(
5
), pp.
351
358
.
8.
Braisted
,
W.
, and
Brockman
,
R.
,
1999
, “
Finite Element Simulation of Laser Shock Peening
,”
Int. J. Fatigue
,
21
(
7
), pp.
719
724
.
9.
Ding
,
K.
, and
Ye
,
L.
,
2003
, “
FEM Simulation of Two Sided Laser Shock Peening of Thin Sections of Ti-6Al-4V Alloy
,”
Surf. Eng.
,
19
(
2
), pp.
127
133
.
10.
Ding
,
K.
, and
Ye
,
L.
,
2006
,
Laser Shock Peening-Performance and Process Simulation
,
Woodhead Publishing
,
Cambridge, UK
.
11.
Hfaiedh
,
N.
,
Peyre
,
P.
,
Song
,
H.
,
Popa
,
I.
,
Ji
,
V.
, and
Vignal
,
V.
,
2015
, “
Finite Element Analysis of Laser Shock Peening of 2050-T8 Aluminum Alloy
,”
Int. J. Fatigue
,
70
, pp.
480
489
.
12.
Ocana
,
J. L.
,
Morales
,
M.
,
Molpeceres
,
C.
, and
Torres
,
J.
,
2004
, “
Numerical Simulation of Surface Deformation and Residual Stress Fields in Laser Shock Processing Experiments
,”
Appl. Surf. Sci.
,
238
(
1–4
), pp.
242
248
.
13.
Zhang
,
W.
,
Yao
,
Y. L.
, and
Noyan
,
I. C.
,
2004
, “
Micro Scale Laser Shock Peening of Thin Films—Part I: Experiment, Modeling and Simulation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
1
), pp.
10
17
.
14.
Hu
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2006
, “
3-D FEM Simulation of Laser Shock Processing
,”
Surf. Coat. Technol.
,
201
(
3–4
), pp.
1426
1435
.
15.
Peyre
,
P.
,
Chaeib
,
I.
, and
Braham
,
C.
,
2007
, “
FEM Calculation of Residual Stress Induced by Laser Shock Processing in Stainless Steels
,”
Modell. Simul. Mater. Sci. Eng.
,
15
(
3
), pp.
205
221
.
16.
Brockman
,
R. A.
,
Braisted
,
W. R.
,
Olson
,
S. E.
,
Tenaglia
,
R. D.
,
Clauer
,
A. H.
,
Langer
,
K.
, and
Shepard
,
M. J.
,
2012
, “
Prediction and Characterization of Residual Stress From Laser Shock Peening
,”
Int. J. Fatigue
,
36
(
1
), pp.
96
108
.
17.
Peyre
,
P.
,
Berthe
,
L.
,
Vignal
,
V.
,
Popa
,
I.
, and
Baudin
,
2012
, “
Analysis of Laser Shock Waves and Resulting Surface Deformations in an Al-Cu-Li-Aluminum Alloy
,”
J. Phys. D: Appl. Phys
,
45
(
33
), p.
335304
.
18.
Bhamare
,
S.
,
Ramakrishnan
,
G.
,
Mannava
,
S. R.
,
Langer
,
K.
,
Vasudevan
,
V. K.
, and
Qian
,
D.
,
2013
, “
Simulation-Based Optimization of Laser Shock Peening Process for Improved Bending Fatigue Life of Ti-6Al-2Sn-4Zr-2Mo Alloy
,”
Surf. Coat. Technol.
,
232
, pp.
464
474
.
19.
Hu
,
Y.
,
Han
,
Y.
,
Yao
,
Z.
, and
Hu
,
J.
,
2010
, “
Three Dimensional Numerical Simulation and Experimental Study of Sheet Metal Bending by Laser Peen Forming
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
061001
.
20.
Spradlin
,
T. J.
,
2011
, “Process Sequencing for Fatigue Life Extension of Large Scale Laser Peened Components,”
Ph.D. thesis
, Wright State University, Dayton, OH.https://etd.ohiolink.edu/!etd.send_file?accession=wright1316292716&disposition=inline
21.
Hasser
,
P. J.
,
Malik
,
A. S.
,
Langer
,
K.
,
Spradlin
,
T. J.
, and
Hatamleh
,
M. I.
,
2016
, “
An Efficient Reliability-Based Simulation Method for Optimum Laser Peening Treatment
,”
ASME J. Manuf. Sci. Eng.
,
138
(
11
), p.
111001
.
22.
Hatamleh
,
M. I.
,
Mahadevan
,
J.
,
Malik
,
A. S.
, and
Qian
,
D.
,
2017
, “
Variable Damping Profiles for Laser Shock Peening Simulation Using Modal Analysis and the SEATD Method
,”
ASME
Paper No. MSEC2017-2891.
23.
Richardson
,
L. F.
,
1911
, “
The Approximate Arithmetical Solution by Finite Difference of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London A
,
210
(
459–470
), pp.
307
357
.
24.
Cassell
,
A. C.
,
Kinsey
,
P. J.
, and
Sefton
,
D. J.
,
1968
, “
Cylindrical Shell Analysis by Dynamic Relaxation
,”
Proc. Inst. Civ. Eng.
,
39
(
1
), pp.
75
84
.
25.
Welsh
,
A. K.
,
1967
, “
Discussion on Dynamic Relaxation
,”
Proc. Inst. Civ. Eng.
,
37
(
4
), pp.
723
750
.
26.
Underwood
,
P.
,
1983
, “
Dynamic Relaxation
,”
Computational Methods for Transient Analysis
,
Elsevier
,
Amsterdam, The Netherlands
, pp.
245
265
.
27.
Rayleigh
,
L.
,
1894
,
Theory of Sound
, 2nd ed., Vol.
1
,
Macmillan
,
New York
.
28.
Mead
,
D.
,
1998
,
Passive Vibration Control
,
Wiley
,
New York
.
29.
Géradin
,
M.
, and
Rixen
,
J.
,
2015
,
Mechanical Vibrations Theory and Application to Structural Dynamics
,
Wiley
,
Chichester, UK
, Chap. 3.
30.
Dassault Systèmes,
2013
, “ABAQUS Theory Guide, v6.13,”
Dassault Systèmes
,
Waltham, MA
.
You do not currently have access to this content.