Abstract

Additive manufacturing (AM) is a set of manufacturing processes that are capable of producing complex parts directly from a computer model of the part. This review provides a history of the early antecedents of these processes. In addition, the different classes of AM processes and their commercialization are presented and discussed along with their fields of use. This paper emphasizes AM processes that produce production quality parts. The review also addresses design issues and the commercial state of the art for production of polymer, metal, and ceramic parts. A main emphasis of this paper is the development and motivations for AM especially during its nascent years. The paper is written for the general readership of manufacturing professionals and researchers.

References

References
1.
Wong
,
K.
, and
Hernandez
,
A.
,
2012
, “
A Review of Additive Manufacturing
,”
International Scholarly Research Notices
.
2.
Huang
,
S.
,
Liu
,
P.
,
Mokasdar
,
A.
, and
Hou
,
L.
, “
Additive Manufacturing and Its Societal Impact: A Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1191
1203
. 10.1007/s00170-012-4558-5
3.
Bikas
,
H.
,
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
4.
Bourell
,
D.
, and
Wohlers
,
T.
,
2020
, “Introduction to Additive Manufacturing,”
Additive Manufacturing
, Vol.
24
,
ASM
,
Materials Park, OH
.
5.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B
,
143
, pp.
172
196
. 10.1016/j.compositesb.2018.02.012
6.
Xibing
,
G.
,
Anderson
,
T.
, and
Chou
,
K.
,
2012
, “
Review on Powder-Based Electron Beam Additive Manufacturing Technology
,”
Proceedings of the ASME/ISCIE 2012 International Symposium on Flexible Automation
,
St. Louis, MO
,
June 18–20
.
7.
Schmidt
,
M.
,
Merklein
,
M.
,
Bourell
,
D.
,
Dimitrov
,
D.
,
Hausotte
,
T.
,
Wegener
,
K.
,
Overmeyer
,
L.
,
Vollertsen
,
F.
, and
Levy
,
G.
,
2017
, “
Laser Based Additive Manufacturing in Industry and Academia
,”
CIRP Ann.
,
66
(
2
), pp.
561
583
. 10.1016/j.cirp.2017.05.011
8.
Leach
,
R.
,
Bourell
,
D.
,
Carmignato
,
S.
,
Donmez
,
A.
,
Senin
,
N.
, and
Dewulf
,
W.
,
2019
, “
Geometrical Metrology for Metal Additive Manufacturing
,”
CIRP Ann.
,
68
(
2
), pp.
677
700
. 10.1016/j.cirp.2019.05.004
9.
Bourell
,
D.
,
Kruth
,
J.
,
Leu
,
M.
,
Levy
,
G.
,
Rosen
,
D.
,
Beese
,
A.
, and
Clare
,
A.
,
2017
, “
Materials for Additive Manufacturing
,”
CIRP Ann.
,
2
(
66
), pp.
657
80
. 10.1016/j.cirp.2017.05.009
10.
Singh
,
S.
,
Ramakrishna
,
S.
, and
Singh
,
R.
,
2017
, “
Material Issues in Additive Manufacturing: A Review
,”
J. Manuf. Process.
,
25
, pp.
185
200
. 10.1016/j.jmapro.2016.11.006
11.
Li
,
N.
,
Huang
,
S.
,
Zhang
,
G.
,
Qin
,
R.
,
Liu
,
W.
,
Xiong
,
H.
,
Shi
,
G.
, and
Blackburn
,
J.
,
2019
, “
Progress in Additive Manufacturing on new Materials: A Review
,”
J. Mater. Sci. Technol.
,
35
(
2
), pp.
242
269
. 10.1016/j.jmst.2018.09.002
12.
Frazier
,
W.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
13.
Lewandowski
,
J.
, and
Seifi
,
M.
,
2016
, “
Metal Additive Manufacturing: A Review of Mechanical Properties
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
151
186
. 10.1146/annurev-matsci-070115-032024
14.
Gorsse
,
S.
,
Hutchinson
,
C.
,
Gouné
,
M.
, and
Banerjee
,
R.
,
2017
, “
Additive Manufacturing of Metals: A Brief Review of the Characteristic Microstructures and Properties of Steels, Ti-6Al-4V and High-Entropy Alloys
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
584
610
. 10.1080/14686996.2017.1361305
15.
Deckers
,
J.
,
Vleugels
,
J.
, and
Kruth
,
J.
,
2014
, “
Additive Manufacturing of Ceramics: A Review
,”
J. Ceram. Sci. Technol.
, pp.
245
260
.
16.
Ferraris
,
E.
,
Vleugels
,
J.
,
Guo
,
Y.
,
Bourell
,
D.
,
Kruth
,
J.
, and
Lauwers
,
B.
,
2016
, “
Shaping of Engineering Ceramics by Electro, Chemical and Physical Processes
,”
CIRP Ann.
,
65
(
2
), pp.
761
784
. 10.1016/j.cirp.2016.06.001
17.
ASTM
,
2009
,
Standard F2792-09, Standard Terminology for Additive Manufacturing Technologies, Superseded
,
2009
.
18.
ASTM
,
2012
,
Standard F2792-12, Standard Terminology for Additive Manufacturing Technologies, Withdrawn
.
19.
Gibson
,
I.
, and
Savalani
,
M.
,
2006
, “
Rapid Manufacture and GARPA
,”
Rapid Prototyp. J.
,
12
(
3
). 10.1108/rpj.2006.15612cab.001
20.
Beaman
,
J.
,
Barlow
,
J.
,
Bourell
,
D.
,
Crawford
,
R.
,
Marcus
,
H.
, and
McAlea
,
K.
,
1997
,
Solid Freeform Fabrication: A New Direction in Manufacturing
,
Kluwer Academic Publishers
,
Norwell, MA
.
21.
Blanther
,
E.
,
1892
, “
Manufacture of Contour Relief Maps
,”
U.S. Patent 473,901
.
22.
Perera
,
B.
,
1940
, “
Process for Making Relief Maps
,”
U.S. Patent 2,189,592
.
23.
Concordet
,
N.
,
1951
, “
Three-dimensional Exhibit
,”
U.S. Patent 2,556,798
.
24.
Zang
,
E.
,
1964
, “
Vitavue Relief Model Technique
,”
U.S. Patent 3,137,080
.
25.
Gaskin
,
T.
,
1973
, “
Earth Science Teaching Device
,”
U.S. Patent 3,751,827
.
26.
Bogart
,
M.
,
1979
, “
In the Art the End Don't Always Justify Means
,”
Smithsonian
, pp.
104
110
.
27.
Willeme
,
F.
,
1864
, “
Photo-sculpture
,”
U.S. Patent 43,822
.
28.
Swainson
,
W. K.
,
1977
, “
Method, Medium and Apparatus for Producing Three-dimensional Figure Product
,”
U.S. Patent 4,041,476
.
29.
Schwerzel
,
R. E.
,
Wood
,
V. E.
,
McGinniss
,
V. D.
, and
Verber
,
C. M.
,
1984
, “
Three-dimensional Photochemical Machining With Lasers
,”
Appl of Lasers to Ind Chem
, pp.
90
97
.
30.
Baker
,
R.
,
1925
, “
Method of Making Decorative Articles
,”
U.S. Patent 1,533,300
.
31.
Lindgren
,
N.
,
1967
, “
Method of Manufacturing Electric Motors
,”
U.S. Patent 3,348,300
.
32.
Foote
,
D.
,
1970
, “
Art of Interlocking Plate Assembly for Laminated Padlock Bodies
,”
U.S. Patent 3,548,486
.
33.
DiMatteo
,
P.
,
1976
, “
Method of Generating and Constructing Three-dimensional Bodies
,”
U.S. Patent 3,932,923
.
34.
Yokoi
,
H.
,
Suzuki
,
T.
, and
Nakagawa
,
T.
,
1984
, “
Manufacturing of Blanking Tool and Its Die Set by Laminating Laser-cut Steel Sheets
,”
SME 12th NAMRC Proceedings
,
Houghton, MI
.
35.
Ciraud
,
L.
,
1971
, “
Method and Device for Producing Any Objects From Any Meltable Material
,”
EUR Patent DE 22 63 777 A1
.
36.
Garver
,
T.
,
1961
, “
Method of Producing Metal Rollers
,”
U.S. Patent 3,007,231
.
37.
White
,
W.
,
1964
, “
Pressure Roller and Method of Manufacture
,”
U.S. Patent 3,156,968
.
38.
Ujiie
,
A.
,
1972
, “
Method of Constructing Substantially Circular Cross-section Vessel by Welding
,”
U.S. Patent 3,665,143
.
39.
Brandi
,
H.
, and
Luckow
,
H.
,
1976
, “
Method of Making Large Structural One-Piece Parts of Metal, Particularly One-Piece Shafts
,”
U.S. Patent 3,985,995
.
40.
Gale
,
P.
, and
Fair
,
J.
,
1978
, “
Method of Making Aluminum Piston With Reinforced Piston Ring Groove
,”
U.S. Patent 4,125,926
.
41.
Brown
,
C.
,
Breinan
,
E.
, and
Kear
,
B.
,
1982
, “
Method for Fabricating Articles by Sequential Layer Deposition
,”
U.S. Patent 4,323756
.
42.
Bronowski
,
H.
,
1986
, “
Device for Building up a Workpiece by Deposit Welding
,”
U.S. Patent 4,621,762
.
43.
Hull
,
C.
,
1986
, “
Apparatus for Production of Three-dimensional Objects by Stereolithography
,”
U.S. Patent 4,575,330
.
44.
Jacobs
,
P.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
SME
,
Dearborn, MI
.
45.
Crump
,
S.
,
1992
, “
Apparatus and Method for Creating Three-dimensional Objects
,”
U.S. Patent 5,121,329
.
46.
Feygin
,
M.
,
1988
, “
Apparatus and Method for Forming an Integral Object From Laminations
,”
U.S. Patent 4,752,352
.
47.
Deckard
,
C.
,
1989
, “
Method and Apparatus for Producing Parts by Selective Sintering
,”
U.S. Patent 4,863,538
.
48.
Sanders
,
R.
,
1996
, “
3-D Model Maker
,”
U.S. Patent 5,506,607
.
49.
Helenski
,
R.
,
1992
, “
Method and Means for Constructing Three-dimensional Articles by Particle Deposition
,”
U.S. Patent 5,136,515
.
50.
Sachs
,
E.
,
Haggerty
,
J.
, and
Michael Cima
,
P. W.
,
1993
, “
Three-dimensional Printing Techniques
,”
U.S. Patent 5,204,055
.
51.
Breinan
,
E.
, and
Kear
,
R.
,
1983
, “Rapid Solidification Laser Processing at High Power Density,”
Laser Materials Processing
,
M.
Bass
, ed.,
Elsevier, North-Holland
, pp.
237
295
.
52.
Baheti
,
R.
,
Haefner
,
K.
, and
Sweet
,
L.
,
1984
, Operational Performance of Vision-Based arc Welding Robot Control System,”
Sensors and Control for Automated Manufacturing and Robotics
,
K.
Stelson
, and
L.
Sweet
, eds.,
ASME
, pp.
93
106
.
53.
Prinz
,
F.
,
Mertz
,
R.
,
Ramaswami
,
F.
,
Terk
,
K.
, and
Weiss
,
L.
,
1994
, “
Shape Deposition Manufacturing
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
54.
Kobryn
,
P.
,
Ontko
,
N.
,
Perkins
,
L.
, and
Yiley
,
J.
,
2006
, “
Additive Manufacturing of Aerospace Alloys for Aircraft Structures
,”
Cost Effective Manufacture via Net-Shape Processing
,
Neuilly-sur-Seine, France
.
55.
Griffith
,
M.
,
Keicher
,
D.
,
Atwood
,
C.
,
Romero
,
J.
,
Smugersky
,
J.
,
Harwell
,
L.
, and
Greene
,
D.
,
1996
, “
Freeform Fabrication of Metallic Components Using Laser net Shaping (LENS)
,”
Solid Freeform Fabrication Conference
,
University of Texas at Austin
.
56.
Wohlers
,
T.
,
2019
, “
Wohlers Reports 2019: 3D Printing and Additive Manufacturing State of the Industry
,”
Wohlers Associates, Fort Collins, CO
.
57.
Kruth
,
J.
,
Leu
,
M.
, and
Nakagawa
,
T.
,
1998
, “
Progress in Additive Manufacturing and Rapid Prototyping
,”
CIRP Ann.
,
47
(
2
), pp.
525
540
. 10.1016/S0007-8506(07)63240-5
58.
Dehoff
,
R.
,
Duty
,
C.
,
Peter
,
W.
,
Yamamoto
,
Y.
,
Chen
,
W.
,
Blue
,
C.
, and
Taliman
,
C.
,
2013
, “
Case Study: Additive Manufacturing of Aerospace Brackets
,”
Adv. Mater. Process.
, pp.
19
22
.
59.
Weiss
,
L.
,
Merz
,
R.
,
Prinz
,
F.
,
Neplotnik
,
G.
,
Padamanabhan
,
P.
,
Schultz
,
L.
, and
Ramaswami
,
K.
,
1997
, “
Shape Depoosition Manufacturing of Heterogeneous Structures
,”
J. Manuf. Syst.
,
16
(
4
), pp.
239
248
. 10.1016/S0278-6125(97)89095-4
60.
Fessler
,
J.
,
Nickel
,
A.
,
Link
,
G.
, and
Prinz
,
F.
,
1997
, “
Functional Gradient Metallic Prototypes Through Shape Deposition Manufacturing
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
61.
Jepson
,
L.
,
Beaman
,
J.
,
Bourell
,
D.
, and
Wood
,
K.
,
1997
, “
SLS Processing of Functionally Gradient Materials
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
62.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing—Part 1: A Review
,”
Virtual Phys. Prototyp.
,
8
(
1
), pp.
19
50
. 10.1080/17452759.2013.778175
63.
Hopkinson
,
N.
, and
Dickens
,
P.
,
2003
, “
Analysis of Rapid Manufacturing—Using Layer Manufacturing Processes for Production
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Science
, Vol.
217
, No.
C1
, pp.
31
39
.
64.
Anderson
,
C.
,
2006
,
The Long Tail
,
Hyperion
,
New York
.
65.
Cochran
,
J.
,
Lee
,
K.
,
McDowell
,
D.
, and
Sanders
,
T.
,
2002
, “
Multifunctional Metallic Honeycombs by Thermal Chemical Processing
,”
Processing and Properties of Lightweight Cellular Materials and Structures
.
66.
Hayes
,
A.
,
Wang
,
A.
,
Dempsey
,
B.
, and
McDowell
,
D.
,
2004
, “
Mechanics of Linear Cellular Alloys
,”
Mech. Mater.
,
36
(
8
), pp.
691
713
. 10.1016/j.mechmat.2003.06.001
67.
Gibson
,
L.
, and
Ashby
,
M.
,
1999
,
Cellular Solids: Structure and Properties
,
Cambridge University Press
,
Cambridge, UK
.
68.
Seepersad
,
C.
,
Conner
,
C.
,
Allen
,
J.
,
McDowell
,
D.
, and
Mistree
,
F.
,
2006
, “
Robust Design of Cellular Materials With Topological and Dimensional Imperfections
,”
ASME J. Mech. Des.
,
128
(
6
), pp.
1285
1297
. 10.1115/1.2338575
69.
Nguyen
,
J.
,
Park
,
S.
, and
Rosen
,
D.
,
2013
, “
Heuristic Optimization Method for Cellular Structure Design of Light Weight Components
,”
Int. J. Precis. Eng. Manuf.
,
14
(
6
), pp.
1071
1078
. 10.1007/s12541-013-0144-5
70.
Tamburrino
,
F.
,
Graziosi
,
S.
, and
Bordegoni
,
M.
,
2018
, “
The Design Process of Additively Manufactured Mesoscale Lattice Structures: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
040801
. 10.1115/1.4040131
71.
Dong
,
G.
,
Tang
,
Y.
, and
Zhao
,
Y.
,
2017
, “
A Survey of Modeling of Lattice Structures Fabricated by Additive Manufacturing
,”
ASME J. Mech. Des.
,
138
(
10
), p.
100906
. 10.1115/1.4037305
72.
Zheng
,
X.
,
Lee
,
H.
,
Weisgraber
,
T.
,
Shusteff
,
M.
,
DeOtte
,
J.
,
Duoss
,
E.
,
Kuntz
,
J.
,
Biener
,
M.
,
Ge
,
Q.
,
Jackson
,
J.
,
Kucheyev
,
S.
,
Fang
,
N.
, and
Spadaccini
,
C.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
. 10.1126/science.1252291
73.
Aremu
,
A.
,
Brennan-Craddock
,
J.
,
Panesar
,
A.
,
Ashcroft
,
I.
,
Hague
,
R.
,
Wildman
,
R.
, and
Tuck
,
C.
,
2017
, “
A Voxel-Based Method of Constructing and Skinning Conformal and Functionally Graded Lattice Structures Suitable for Additive Manufacturing
,”
Addit. Manuf.
,
13
, pp.
1
13
. 10.1016/j.addma.2016.10.006
74.
Nguyen
,
J.
,
Park
,
S.
,
Rosen
,
D.
,
Folgar
,
L.
, and
Williams
,
J.
,
2012
, “
Conformal Lattice Structure Design and Fabrication
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
75.
Maheshwara
,
U. B. D.
, and
Seepersad
,
C.
,
2007
, “
Design and Freeform Fabrication of Deployable Structures With Lattice Skins
,”
Rapid Prototyp. J.
,
13
(
4
), pp.
213
225
. 10.1108/13552540710776160
76.
Maloney
,
K.
,
Fink
,
K.
,
Schaedler
,
T.
,
Kolodziejska
,
J.
,
Jacobsen
,
A.
, and
Roper
,
C.
,
2012
, “
Multifunctional Heat Exchangers Derived From Three-Dimensional Micro-Lattice Structures
,”
Int. J. Heat Mass Transfer
,
55
(
9–10
), pp.
2486
2493
. 10.1016/j.ijheatmasstransfer.2012.01.011
77.
Seepersad
,
C.
,
Dempsey
,
B.
,
Allen
,
J.
,
Mistree
,
F.
, and
McDowell
,
D.
,
2004
, “
Design of Multifunctional Honeycomb Materials
,”
AIAA J.
,
42
(
5
), pp.
1025
1033
. 10.2514/1.9594
78.
Wang
,
X.
,
Xu
,
S.
,
Zhou
,
S.
,
Xu
,
W.
,
Leary
,
M.
,
Choong
,
P.
,
Qian
,
M.
,
Brandt
,
M.
, and
Xie
,
Y.
,
2016
, “
Topological Design and Additive Manufacturing of Porous Metals for Bone Scaffolds and Orthopaedic Implants
,”
Biomaterials
,
83
, pp.
127
141
. 10.1016/j.biomaterials.2016.01.012
79.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2010
, “Design for Additive Manufacturing,”
Additive Manufacturing Technologies
,
Springer
,
Boston
, pp.
299
332
.
80.
Vendra
,
L.
, and
Achanta
,
A.
,
2018
, “
Metal Additive Manufacturing in the Oil and Gas Industry
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
81.
Rannar
,
L.-E.
,
Glad
,
A.
, and
Gustafson
,
C.-G.
,
2007
, “
Efficient Cooling With Tool Inserts Manufactured by Electron Beam Melting
,”
Rapid Prototyp. J.
,
13
(
3
), pp.
128
135
. 10.1108/13552540710750870
82.
Faustini
,
M.
,
Crawford
,
R.
,
Neptune
,
R.
,
Rogers
,
W.
,
Gitter
,
A.
, and
Bosker
,
G.
,
2003
, “
Design and Analysis of Orthogonally Compliant Features for Duraform/SS Manufactured Plates
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
83.
Gilmore
,
J.
, and
Pine
,
B.
,
1997
, “
The Four Faces of Mass Customization
,”
Harv. Bus. Rev.
,
75
(
1
), pp.
91
102
.
84.
Conner
,
B.
,
Manogharan
,
G.
,
Martof
,
A.
,
Rodomsky
,
L.
,
Rodomsky
,
C.
,
Jordan
,
D.
, and
Limperos
,
J.
,
2014
, “
Making Sense of 3D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
, pp.
64
76
. 10.1016/j.addma.2014.08.005
85.
Faustini
,
M.
,
Neptune
,
R.
, and
Crawford
,
R.
,
2006
, “
The Quasi-Static Response of Compliant Prosthetic Sockets for Transtibial Amputees Using Finite Element Methods
,”
Med. Eng. Phys.
,
28
(
2
), pp.
114
121
. 10.1016/j.medengphy.2005.04.019
86.
Systems
, “
Bespoke Prosthetic Fairings: The Art of Personalized Medicine With Industrial 3D Printing
,” https://www.3dsystems.com/learning-center/case-studies/bespoke-prosthetic-fairings-art-personalized-medicine, Accessed Oct. 24, 2019
87.
Wang
,
Y.
,
Blache
,
R.
, and
Xu
,
X.
,
2017
, “
Selection of Additive Manufacturing Processes
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
434
447
. 10.1108/RPJ-09-2015-0123
88.
Seepersad
,
C.
,
2014
, “
Challenges and Opportunities in Design for Additive Manufacturing
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
10
13
. 10.1089/3dp.2013.0006
89.
Laverne
,
F.
,
Segonds
,
F.
,
Anwer
,
N.
, and
Le Coq
,
M.
,
2015
, “
Assembly Based Methods to Support Product Innovation in Design for Additive Manufacturing: An Exploratory Case Study
,”
ASME J. Mach. Des
,
137
(
12
), p.
121701
. 10.1115/1.4031589
90.
Kumke
,
M.
,
Watschke
,
H.
,
Hartogh
,
P.
,
Bavendiek
,
A.-K.
, and
Vietor
,
T.
,
2018
, “
Methods and Tools for Identifying and Leveraging Additive Manufacturing Design Potentials
,”
Int. J. Interact. Des. Manuf.
,
12
(
2
), pp.
481
493
. 10.1007/s12008-017-0399-7
91.
Blosch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study
,”
ASME J. Mech. Des.
,
141
(
2
), p.
041101
. 10.1115/1.4041051
92.
Perez
,
B.
,
Anderson
,
D.
, and
Wood
,
K.
,
2015
, “
Crowdsourced Design Principles for Leveraging the Capabilities of Additive Manufacturing
,”
International Conference of Engineering Design
,
Milan, Italy
.
93.
Prabhu
,
R.
,
Miller
,
S.
,
Simpson
,
T.
, and
Meisel
,
N.
,
2020
, “
Exploring the Effects of Additive Manufacturing Education on Students’ Engineering Design Process and its Outcomes
,”
ASME J. Mech. Des.
,
142
(
4
), p.
042001
. 10.1115/1.4044324
94.
Perez
,
B.
,
Hilburn
,
S.
,
Jensen
,
D.
, and
Wood
,
K. L.
,
2018
, “
Design Principle-Based Stimuli for Improving Creativity During Ideation
,”
Proc. Inst. Mech. Eng. Part C
.
95.
Yang
,
S.
,
Page
,
T.
,
Zhang
,
Y.
, and
Zhao
,
Y. F.
,
2020
, “
Towards an Automated Decision Support System for the Identification of Additive Manufacturing Part Candidates
,”
J. Intell. Manuf.
, pp.
1
17
. 10.1007/s10845-020-01545-6
96.
Munguía
,
J.
,
Ciurana
,
J.
, and
Riba
,
C.
,
2009
, “
Neural-Network-Based Model for Build-Time Estimation in Selective Laser Sintering
,”
Proc. Inst. Mech. Eng. Part B
,
223
(
8
), pp.
995
1003
. 10.1243/09544054JEM1324
97.
Williams
,
G.
,
Meisel
,
N. A.
,
Simpson
,
T. W.
, and
McComb
,
C.
,
2019
, “
Design Repository Effectiveness for 3D Convolutional Neural Networks: Application to Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
11
), p.
111701
. 10.1115/1.4044199
98.
Booth
,
J.
,
Alperovich
,
J.
,
Chawla
,
P.
,
Ma
,
J.
,
Reid
,
T.
, and
Ramani
,
K.
,
2017
, “
The Design for Additive Manufacturing Worksheet
,”
ASME J. Mech. Des.
, 139(10), p.
100904
. 10.1115/1.4037251
99.
Mani
,
M.
,
Witherell
,
P.
, and
Jee
,
H.
,
2017
, “
Design Rules for Additive Manufacturing
,”
ASME IDETC Computers and Information in Engineering Conference
,
Cleveland, OH
.
100.
Allison
,
J.
,
Sharpe
,
C.
, and
Seepersad
,
C.
,
2019
, “
Powder Bed Fusion Metrology for Additive Manufacturing Design Guidance
,”
Addit. Manuf.
,
25
, pp.
239
251
. 10.1016/j.addma.2018.10.035
101.
Dinar
,
M.
, and
Rosen
,
D.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
, p.
021013
. 10.1115/1.4035787
102.
Meisel
,
N.
, and
Williams
,
C.
,
2015
, “
An Investigation of Key Design for Additive Manufacturing Constraints in Multimaterial Three-Dimensional Printing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111406
. 10.1115/1.4030991
103.
Adam
,
G.
, and
Zimmer
,
D.
,
2014
, “
Design for Additive Manufacturing—Element Transitions and Aggregated Structures
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
20
28
. 10.1016/j.cirpj.2013.10.001
104.
Bendsoe
,
M.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
. 10.1016/0045-7825(88)90086-2
105.
Bendsoe
,
M.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
. 10.1007/BF01650949
106.
Liu
,
J.
,
Gaynor
,
A.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
,
Kato
,
J.
,
Tang
,
J.
,
Wang
,
C.
,
Cheng
,
L.
,
Liang
,
X.
, and
To
,
A.
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
57
(
6
), pp.
2457
2483
. 10.1007/s00158-018-1994-3
107.
Gorguluarslan
,
R.
,
Park
,
S.-I.
,
Rosen
,
D.
, and
Choi
,
S.-K.
,
2015
, “
A Multilevel Upscaling Method for Material Characterization of Additively Manufactured Part Under Uncertainties
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111408
. 10.1115/1.4031012
108.
Gleadall
,
A.
,
Ashcroft
,
I.
, and
Segal
,
J.
,
2018
, “
VOLCO: A Predictive Model for 3D Printed Microarchitecture
,”
Addit. Manuf.
,
21
, pp.
605
618
. 10.1016/j.addma.2018.04.004
109.
Gorguluarslan
,
R.
,
Gandhi
,
U.
,
Song
,
Y.
, and
Choi
,
S.
,
2017
, “
An Improved Lattice Structure Design Optimization Framework Considering Additive Manufacturing Constraints
,”
Rapid Prototyp. J.
,
23
(
2
), pp.
305
319
. 10.1108/RPJ-10-2015-0139
110.
Xiong
,
Y.
,
Duong
,
P. L. T.
,
Wang
,
D.
,
Park
,
S. I.
,
Ge
,
Q.
,
Raghavan
,
N.
, and
Rosen
,
D. W.
,
2019
, “
Data-driven Design Space Exploration and Exploitation for Design for Additive Manufacturing
,”
ASME J. Mech. Des.
,
141
(
10
), p.
101101
. 10.1115/1.4043587
111.
Schmelzle
,
J.
,
Kline
,
E.
,
Dickman
,
C.
,
Reutzel
,
E.
,
Jones
,
G.
, and
Simpson
,
T.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
112.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
20
, pp.
444
449
. 10.1016/j.jmapro.2015.06.024
113.
Yang
,
S.
,
Santoro
,
F.
, and
Zhao
,
Y.
,
2018
, “
Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation
,”
ASME J. Mech. Des.
,
140
(
4
), p.
041701
. 10.1115/1.4038923
114.
Yang
,
S.
, and
Zhao
,
Y.
,
2018
, “
Additive Manufacturing-Enabled Part Count Reduction: A Lifecycle Perspective
,”
ASME J. Mech. Des.
,
140
(
3
), p.
031702
. 10.1115/1.4038922
115.
Yang
,
S.
,
Min
,
W.
,
Ghibaudo
,
J.
, and
Zhao
,
Y.
,
2019
, “
Understanding the Sustainability Potential of Part Consolidation Design Supported by Additive Manufacturing
,”
J. Cleaner Prod.
,
232
, pp.
722
738
. 10.1016/j.jclepro.2019.05.380
116.
MacDonald
,
E.
, and
Wicker
,
R.
,
2016
, “
Multiprocess 3D Printing for Increasing Component Functionality
,”
Science
,
353
(
6307
), pp.
aaf2093
aaf2093
. 10.1126/science.aaf2093
117.
Thompson
,
M.
,
Moroni
,
G.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P. A. B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.
,
65
(
2
), pp.
737
760
. 10.1016/j.cirp.2016.05.004
118.
Yang
,
S.
, and
Zhao
,
Y.
,
2015
, “
Additive Manufacturing Enabled Design Theory and Methodology: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
327
342
. 10.1007/s00170-015-6994-5
119.
Boyard
,
N.
,
Rivette
,
M.
,
Christmann
,
O.
, and
Richir
,
S.
,
2013
, “
A Design Methodology for Parts Using Additive Manufacturing
,”
6th International Conference on Advanced Research in Virtual and Rapid Prototyping
,
Leiria, Portugal
.
120.
Kumke
,
M.
,
Watschke
,
H.
, and
Vietor
,
T.
,
2016
, “
A New Methodological Framework for Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
11
(
1
), pp.
3
19
. 10.1080/17452759.2016.1139377
121.
Zhang
,
Y.
,
Bernard
,
A.
,
Gupta
,
R.
, and
Harik
,
R.
,
2014
, “
Evaluating the Design for Additive Manufacturing: A Process Planning Perspective
,”
Procedia CIRP
,
21
, pp.
144
150
. 10.1016/j.procir.2014.03.179
122.
Ponche
,
R.
,
Hascoet
,
J.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2017
, “A New Global Approach to Design for Additive Manufacturing,”
Additive Manufacturing Handbook
,
CRC Press
, pp.
169
180
.
123.
Clymer
,
D.
,
Cagan
,
J.
, and
Beuth
,
J.
,
2017
, “
Power-Velocity Process Design Charts for Powder Bed Additive Manufacturing
,”
ASME J. Mech. Des.
,
139
(
10
), p.
100907
. 10.1115/1.4037302
124.
Kirk
,
T.
,
Galvan
,
E.
,
Malak
,
R.
, and
Arroyave
,
R.
,
2018
, “
Computational Design of Gradient Paths in Additively Manufactured Functionally Graded Materials
,”
ASME J. Mech. Des.
,
140
(
11
), p.
111410
. 10.1115/1.4040816
125.
Rosen
,
D.
,
2007
, “
Computer-Aided Design for Additive Manufacturing of Cellular Structures
,”
Comput. Aided Des. Appl.
,
4
(
5
), pp.
585
594
. 10.1080/16864360.2007.10738493
126.
McDowell
,
D.
,
Panchal
,
J.
,
Choi
,
H.
,
Seepersad
,
C.
,
Allen
,
J.
, and
Mistree
,
F.
,
2009
,
Integrated Design of Multiscale, Multifunctional Materials and Products
,
Butterworth-Heinemann
.
127.
Leigh
,
D.
,
2019
, “
Improved Process Stability and Ductility in Laser Sintered Polyamide
,”
Ph.D. dissertation
,
University of Texas at Austin
.
128.
Bourell
,
D.
,
Watt
,
T.
,
Leigh
,
D.
, and
Fulcher
,
B.
,
2014
, “
Performance Limitations in Polymer Laser Sintering
,”
Phys. Procedia
,
56
, pp.
147
156
. 10.1016/j.phpro.2014.08.157
129.
Dickens
,
E.
,
Lee
,
B.
,
Taylor
,
G.
,
Magistro
,
A.
, and
Ng
,
H.
,
1994
, “
Sinterable Semi-crystalline Powder an Near-fully Dense Article Formed Therewith
,”
U.S. Patent 5,342,919
.
130.
Phillips
,
T.
,
Fish
,
S.
, and
Beaman
,
J.
,
2018
, “
Development of an Automated Laser Control System for Improving Temperature Uniformity and Controlling Component Strength in Selective Laser Sintering
,”
Add. Manuf.
,
24
, pp.
316
322
. 10.1016/j.addma.2018.10.016
131.
Zaldivar
,
R.
,
Witkin
,
D.
,
Patel
,
D.
,
Schmitt
,
K.
, and
Nokes
,
J.
,
2017
, “
Influence of Processing and Orientation Print Effects on the Mechanical and Thermal Behvior of 3D-Printed ULTEM 9085 Material
,”
Add. Manf.
,
13
, pp.
71
80
. 10.1016/j.addma.2016.11.007
132.
Direct
,
S.
,
2020
, “
The Ultimate 3D Printing Match Up: Laser Sintering vs. Fused Depostion Modeling
,” https://www.stratasysdirect.com/manufacturing-services/3d-printing/selective-laser-sintering-vs-fused-deposition-modeling, Accessed July 29, 2020.
133.
Manriquez-Frayre
,
J.
, and
Bourell
,
D.
,
1990
, “
Selective Laser Sintering of Binary Metallic Powder
,”
Solid Freeform Fabrication Symposium
,
The University of Texas at Austin
.
134.
Bourell
,
D.
,
Marcus
,
H.
,
Barlow
,
J.
,
Beaman
,
J.
, and
Deckard
,
C.
,
1990
, “
Multiple Material Systems for Selective Beam Sintering
,”
U.S. Patent 4,944,817
.
135.
Das
,
S.
,
McWllliams
,
B. W. J.
, and
Beaman
,
J.
,
1991
, “
Design of a High Temperature Workstation for the Selective Laser Sintering Process
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
136.
Nyrhila
,
O.
,
1996
, “
Direct Laser Sintering of Injection Moulds
,”
5th European Conference on Rapid Prototyping and Manufacturing
,
University of Nottingham
.
137.
Nyrhila
,
O.
,
Kotila
,
J.
,
Lind
,
J.
, and
Syvänen
,
T.
,
1998
, “
Industrial Use of Direct Metal Laser Sintering
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
138.
Agarwala
,
M.
,
Bourell
,
D.
,
Wu
,
B.
, and
Beaman
,
J.
,
1993
, “
An Evaluation of the Mechanical Behavior of Bronze Nickel Composites Produced by Selective Laser Sintering
,”
Solid Freeform Fabrication Symposium
,
The University at Austin
.
139.
Larson
,
R.
,
1998
, “
Method and Device for Producing Three-dimensional Bodies
,”
U.S. Patent 5,786,562
.
140.
Plessis
,
A.
,
Yadroitsava
,
I.
, and
Yadroitsev
,
I.
,
2018
, “
Nondestructive Micro-CT Inspection of Additive Parts: How to Beat the Bottlenecks
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
141.
Dietrich
,
S.
,
Englert
,
L.
, and
Pinter
,
P.
,
2018
, “
Non-destructive Characterization of Additively Manufactured Components Using X-Ray Micro-Computed Tomography
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
142.
Hyde
,
C. J.
,
Xu
,
Z.
,
Thompson
,
A.
,
Leach
,
R. K.
,
Maskery
,
I.
,
Tuck
,
C. J.
, and
Clare
,
A. T.
,
2017
, “
On the Use of X-Ray Computed Tomography for Monitoring the Failure of an Inconel 718 Two-bar Specimen Manufactured by Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
143.
Narra
,
S.
,
Ozturk
,
T.
,
Beuth
,
J.
, and
Rollett
,
A. D.
,
2016
, “
Valuating the Effect of Processing Parameters on Porosity in Electron Beam Melted Ti-6Al-4V via Synchrotron X-Ray Microtomography
,”
JOM
,
68
(
3
), p.
765
. 10.1007/s11837-015-1802-0
144.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
Carlo
,
F. D.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), p.
3602
. 10.1038/s41598-017-03761-2
145.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Kantzos
,
C.
,
Pauza
,
J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging
,”
Science
,
363
(
6
), pp.
849
852
. 10.1126/science.aav4687
146.
Zhou
,
X.
,
Wang
,
D.
,
Liu
,
X.
,
Zhang
,
D.
,
Qu
,
S.
,
Ma
,
J.
,
London
,
G.
,
Shen
,
Z.
, and
Liu
,
W.
,
2015
, “
3D-Imaging of Selective Laser Melting Defects in a Co–Cr–Mo Alloy by Synchrotron Radiation Micro-CT
,”
Acta Mater.
,
98
, pp.
1
16
. 10.1016/j.actamat.2015.07.014
147.
Lun
,
C.
,
Leung
,
A.
,
Marussi
,
S.
,
Atwood
,
R. C.
,
Towrie
,
M.
,
Withers
,
P. J.
, and
Lee
,
P. D.
,
2018
, “
In Situ X-Ray Imaging of Defect and Molten Pool Dynamics in Laser Additive Manufacturing
,”
Nat. Commun.
,
9
(
1
), p.
1355
. 10.1038/s41467-018-03734-7
148.
Barrett
,
C.
,
Carradero
,
C.
,
Harris
,
E.
,
McKnight
,
J.
,
Walker
,
J.
,
MacDonald
,
E.
, and
Conner
,
B.
,
2018
, “
Low Cost, High Speed Stereovision for Spatter Tracking in Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
149.
Francois
,
M.
,
Sun
,
A.
, and
King
,
W.
, et al
,
2016
, “
Modeling of Additive Manufacturing Processes for Metals: Challenges and Opportunities
,”
Curr. Opin. Solid State Mater. Sci.
,
21
(
4
), pp.
198
206
. 10.1016/j.cossms.2016.12.001
150.
Khairallah
,
S.
, and
Anderson
,
A.
,
2014
, “
Mesoscopic Simulation Model of Selective Laser Melting of Stainless Steel Powder
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2627
2636
. 10.1016/j.jmatprotec.2014.06.001
151.
Cheng
,
B.
,
Li
,
X.
,
Tuffile
,
C.
,
Ilin
,
A.
,
Willeck
,
H.
, and
Hartel
,
U.
,
2018
, “
Multi-Physics Modeling of Single Track Scanning in Selective Laser Melting: Powder Compaction Effect
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
152.
Lee
,
Y.
,
Kirka
,
M.
,
Raghavan
,
N.
, and
Dehoff
,
R.
,
2017
, “
Simulation of Spot Melting Scan Strategy to Predict Columnar to Equiaxed Transition in Metal Additive Manufacturing
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
153.
Shrestha
,
S.
, and
Chou
,
K.
,
2017
, “
Mesoscopic Multilayer Simulation of Selective Laser Melting Process
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
154.
Wang
,
X.
,
Lough
,
C. S.
,
Bristow
,
D. A.
,
Landers
,
R. G.
, and
Kinzel
,
E. C.
,
2018
, “
Effects of Thermal Camera Resolution on Feature Extraction in Selective Laser Melting
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
155.
Kouprianoff
,
D.
,
Luwes
,
N.
,
Yadroitsava
,
I.
, and
Yadroitsev
,
I.
,
2018
, “
Acoustic Emission Technique for Online Detection of Fusion Defects for Single Tracks During Metal Laser Powder Bed Fusion
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
156.
Eschner
,
N.
,
Weiser
,
L.
,
Häfner
,
B.
, and
Lanza
,
G.
,
2018
, “
Development of an Acoustic Process Monitoring System for the Selective Laser Melting (SLM)
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
157.
Lough
,
C. S.
,
Escano
,
L. I.
,
Qu
,
M.
,
Smith
,
C. C.
,
Landers
,
R. G.
,
Bristow
,
D. A.
,
Chen
,
L.
, and
Kinzel
,
E. C.
,
2018
, “
In-Situ Optical Emission Spectroscopy During SLM of 304L Stainless Steel
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
158.
Lough
,
C. S.
,
Wang
,
X.
,
Smith
,
C. C.
,
Adeniji
,
O.
,
Landers
,
R. G.
,
Bristow
,
D. A.
, and
Kinzel
,
E. C.
,
2018
, “
Use of SWIR Imaging to Monitor Layer-To-Layer Part Quality During SLM of 304L Stainless Steel
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
159.
Montazeri
,
M.
, and
Rao
,
P.
,
2017
, “
In-Process Condition Monitoring in Laser Powder Bed Fusion (LPBF)
,”
Solid Freeform Fabrication Symposium
,
University of Txas at Austin
.
160.
Alberts
,
D.
,
Schwarze
,
D.
, and
Witt
,
G.
,
2017
, “
In Situ Melt Pool Monitoring and the Correlation to Part Density of Inconel® 718 for Quality Assurance in Selective Laser Melting
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
161.
Zeng
,
K.
,
Pal
,
D.
, and
Stucker
,
B.
,
2012
, “
A Review of Thermal Analysis Methods in Laser Sintering and Selective Laser Melting
,”
Solid Freeform Fabrication
,
University of Texas at Austin
.
162.
Masoomi
,
M.
,
Paudel
,
B.
,
Shamsaei
,
N.
, and
Thompson
,
S. M.
,
2018
, “
Establishing Property-Performance Relationships Through Efficient Thermal Simulation of the Laser-Powder Bed Fusion Process
,”
Solid Freeform Fabrication Symposium
,
University of Texas at Austin
.
163.
Contuzzi
,
N.
,
Campanelli
,
S. L.
, and
Ludovico
,
A. D.
,
2011
, “
3D Finite Element Analysis in the Selective Laser Melting Process
,”
Int. J. Simul. Modell.
,
10
(
3
), pp.
113
121
. 10.2507/IJSIMM10(3)1.169
164.
Tang
,
Q.
,
Pang
,
S.
,
Chen
,
B.
,
Suo
,
H.
, and
Zhou
,
J.
,
2014
, “
A Three Dimensional Transient Model for Heat Transfer and Fluid Flow of Weld Pool During Electron Beam Freeform Fabrication of Ti-6-Al-4-V Alloy
,”
Int. J. Heat Mass Transfer
,
78
, pp.
203
215
. 10.1016/j.ijheatmasstransfer.2014.06.048
165.
Martukanitz
,
R.
,
Michaleris
,
P.
,
Palmer
,
T.
,
Debroy
,
T.
,
Liu
,
Z.
,
Otis
,
R.
,
Heo
,
T.
, and
Chen
,
L.
,
2014
, “
Toward an Integrated Computational System for Describing the Additive Manufacturing Process for Metallic Materials
,”
Addit. Manuf.
, pp.
52
63
. 10.1016/j.addma.2014.09.002
166.
Klocke
,
F.
,
Derichs
,
C.
,
Ader
,
C.
, and
Demmer
,
A.
,
2007
, “
Investigations on Laser Sintering of Ceramic Slurries
,”
Prod. Eng.
,
1
(
3
), pp.
279
284
. 10.1007/s11740-007-0047-3
167.
Deckers
,
J.
,
Meyers
,
S.
,
Kruth
,
J.
, and
Vleugels
,
J.
,
2014
, “
Corrigendum to Direct Selective Laser Sintering/Melting of High Density Alumina Powder Layers at Elevated Temperatures
,”
Phys. Procedia
,
56
, pp.
117
124
. 10.1016/j.phpro.2014.08.154
168.
Tay
,
B.
,
Evans
,
J.
, and
Edirisinghe
,
M.
,
2003
, “
Solid Freeform Fabrication of Ceramics
,”
Int. Mater. Rev.
,
48
(
6
), pp.
341
370
. 10.1179/095066003225010263
169.
Mostaghaci
,
H.
,
1989
, “
Processing of Ceramic and Metal Matrix Composites
,”
Proceedings of the International Symposium on Advances in Processing of Ceramic and Metal Matrix Composites
,
Halifax, Canada
.
170.
Yang
,
L.
, and
Miyanaji
,
H.
,
2017
, “
Ceramic Additive Manufacturing: A Review of Current Status and Challenges
,”
Solid Freeform Fabrication
,
Austin
.
171.
Kruth
,
J.
,
Levy
,
G.
,
Klocke
,
F.
, and
Childs
,
T.
,
2007
, “
Consolidation Phenomena in Laser and Powder-Bed Based Layered Manufacturing
,”
CIRP Ann. Manuf. Technol.
,
56
(
2
), pp.
730
759
. 10.1016/j.cirp.2007.10.004
172.
Hagedorn
,
Y.
,
Balachandran
,
N.
,
Meiners
,
W.
,
Wissembach
,
K.
, and
Poprawe
,
R.
,
2011
, “
SLM of Net-Shaped High Strength Ceramics: New Opportunities for Producing Dental Restorations
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
173.
Wilkes
,
J.
, and
Hagedorn
,
Y.
,
2013
, “
Additive Manufacturing of ZrO2–Al2O3 Ceramic Components by Selective Laser Melting
,”
Rapid Prototyp. J.
,
19
(
1
), pp.
51
57
. 10.1108/13552541311292736
174.
Wu
,
Y.
,
Du
,
J.
,
Choy
,
K.
, and
Hench
,
L.
,
2007
, “
Laser Densification of Alumina Powder Beds Generated Using Aerosol Assisted Spray Deposition
,”
J. Eur. Ceram. Soc.
,
27
(
16
), pp.
4727
4735
. 10.1016/j.jeurceramsoc.2007.02.219
175.
Lakshminarayan
,
U.
, and
Marcus
,
H.
,
1991
, “
Micro Structural and Mechanical Properties of Al2O3/P2O3 and Al2O3/B2O3 Composites Fabricated by Selective Laser Sintering
,”
Solid Freeform Fabrication Symposium
,
Austin
.
176.
Lakshminarayan
,
U.
,
Ogrydiziak
,
S.
, and
Marcus
,
H.
,
1990
, “
Selective Laser Sintering of Ceramic Materials
,”
Solid Freeform Fabrication Symposium
,
Austin
.
177.
Bertrand
,
P.
,
Bayle
,
F.
,
Combe
,
C.
,
Goeuriot
,
P.
, and
Smurov
,
I.
,
2007
, “
Ceramic Components Manufacturing by Selective Laser Sintering
,”
Appl. Surf. Sci.
,
254
(
4
), pp.
989
992
. 10.1016/j.apsusc.2007.08.085
178.
Cima
,
M.
, and
Sachs
,
E.
,
1991
, “
Three Dimensional Printing: Forms, Materials and Performance
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
179.
Cima
,
M.
,
Oliveira
,
M.
,
Wang
,
H. S. E.
, and
Holman
,
R.
,
2001
, “
Slurry-Based 3DP and Fine Ceramic Components
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
180.
Barlow
,
J.
, and
Vail
,
N.
,
1994
, “
Method of Producing High-Temperature Parts by Way of Low-Temperature Sintering
,”
U.S. Patent 5284695
.
181.
Deckers
,
J.
,
Shahzad
,
K.
,
Vleugels
,
J.
, and
Kruth
,
J.
,
2012
, “
Isostatic Pressing Assisted Indirect Selective Laser Sintering of Alumina Components
,”
Rapid Prototyp. J.
,
18
(
5
), pp.
409
419
. 10.1108/13552541211250409
182.
Shahzad
,
K.
,
Deckers
,
J.
,
Zhang
,
Z.
,
Kruth
,
J.
, and
Vleugels
,
J.
,
2014
, “
Additive Manufacturing of Zirconia Parts by Indirect Selective Laser Sintering
,”
J. Eur. Ceram. Soc.
,
34
(
1
), pp.
81
89
. 10.1016/j.jeurceramsoc.2013.07.023
183.
Leu
,
M.
,
Adamek
,
E.
,
Hilmas
,
H. T. G.
, and
Dogan
,
F.
,
2008
, “
Freeform Fabrication of Zirconium Diboride Parts Using Selective Laser Sintering
,”
Solid Freeform Fabrication
,
Austin, TX
.
184.
Leu
,
M.
,
Pattnaik
,
S.
, and
Hilmas
,
G.
,
2012
, “
Investigation of Laser Sintering for Freeform Fabrication of Zirconium Diboride Parts
,”
Virtual Phys. Prototyp.
,
7
(
1
), pp.
25
36
. 10.1080/17452759.2012.666119
185.
Lee
,
G.
, and
Barlow
,
J.
,
1994
, “
Selective Laser Sintering of Calcium Phosphate Powders
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
186.
Lee
,
I.
,
1998
, “
Rapid Full Densification of Alumina-Glass Composites Fabricated by a Selective Laser Sintering Process
,”
J. Mater. Sci. Lett.
,
17
(
22
), pp.
1907
1911
. 10.1023/A:1006600208059
187.
Bai
,
P.
,
Cheng
,
J.
, and
Liu
,
B.
,
2005
, “
Selective Laser Sintering of Polymer-Coated Al2O3/ZrO2/TiC Ceramic Powder
,”
Trans. Nonferrous Met. Soc. China
,
15
(
2
), pp.
261
265
.
188.
Subramanian
,
K.
,
Vail
,
N.
,
Barlow
,
J.
, and
Marcus
,
H.
,
1995
, “
Selective Laser Sintering of Alumina With Polymer Binders
,”
Rapid Prototyp. J.
,
1
(
2
), pp.
24
35
. 10.1108/13552549510086844
189.
Shahzad
,
K.
,
Deckers
,
J.
,
Boury
,
S.
,
Neirinck
,
B.
,
Kruth
,
J.-P.
, and
Vleugels
,
J.
,
2012
, “
Preparation and Indirect Selective Laser Sintering of Alumina/PA Micro Spheres
,”
Ceram. Int.
,
38
(
2
), pp.
1241
1247
. 10.1016/j.ceramint.2011.08.055
190.
Shahzad
,
K.
,
Deckers
,
J.
,
Kruth
,
J.-P.
, and
Vleugels
,
J.
,
2012
, “
Additive Manufacturing of Alumina Parts by Indirect Selective Laser Sintering and Post-Processing
,”
J. Mater. Process. Technol.
,
213
(
9
), pp.
1484
1494
. 10.1016/j.jmatprotec.2013.03.014
191.
Vail
,
N.
,
Barlow
,
J.
, and
Marcus
,
H.
,
1993
, “
Silicon Carbide Preforms for Metal Infiltration by Selective Laser Sintering of Polymer Encapsulated Powders
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
192.
Tang
,
H.-H.
,
2006
, “
Building Ultra-Thin Layers by Ceramic Laser Sintering
,”
Mater. Trans.
,
47
(
3
), pp.
889
897
. 10.2320/matertrans.47.889
193.
Tang
,
H.-H.
,
Chiu
,
M.-L.
, and
Yen
,
H.-C.
,
2011
, “
Slurry-Based Selective Laser Sintering of Polymer-Coated Ceramic Powders to Fabricate High Strength Alumina Parts
,”
J. Eur. Ceram. Soc.
,
31
(
8
), pp.
1383
1388
. 10.1016/j.jeurceramsoc.2011.02.020
194.
Zimbeck
,
W.
,
Pope
,
M.
, and
Rice
,
R.
,
1996
, “
Microstructures and Strengths of Metals and Ceramics Made by Photopolymer-Based Rapid Prototyping
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
195.
Brady
,
G.
, and
Halloran
,
J.
,
1997
, “
Stereolithography of Ceramic Suspensions
,”
Rapid Prototyp. J.
,
3
(
2
), pp.
61
65
. 10.1108/13552549710176680
196.
Augsburg
,
M.
,
Storch
,
S.
,
Nissen
,
F.
, and
Witt
,
G.
,
2004
, “
Rapid Prototyping with Ceramic-Filled Epoxy Resin by Optoforming
,”
Rapid Prototyp. J.
,
10
(
4
), pp.
225
231
. 10.1108/13552540410551342
197.
Schwentenwein
,
M.
, and
Homa
,
J.
,
2015
, “
Additive Manufacturing of Dense Alumina Ceramics
,”
Int. J. Appl. Ceram. Technol.
,
12
(
1
), pp.
1
7
. 10.1111/ijac.12319
198.
Griffith
,
M.
, and
Halloran
,
J.
,
1996
, “
Freeform Fabrication of Ceramics via Stereo-Lithography
,”
J. Am. Ceram. Soc.
,
79
(
10
), pp.
2601
2608
. 10.1111/j.1151-2916.1996.tb09022.x
199.
Hinczewski
,
C.
,
Corbel
,
S.
, and
Chartier
,
T.
,
1998
, “
Stereolithography for the Fabrication of Ceramic Three- Dimensional Parts
,”
Rapid Prototyp. J.
,
4
(
3
), pp.
104
111
. 10.1108/13552549810222867
200.
Polzin
,
C.
,
Günther
,
D.
, and
Seitz
,
H.
,
2015
, “
3D Printing of Porous Al2O3 and SiC Ceramics
,”
J. Ceram. Sci. Technol.
,
6
(
12
), pp.
141
146
.
201.
Wu
,
H.
,
Li
,
D.
, and
Guo
,
N.
,
2009
, “
Fabrication of Integral Ceramic Mould for Investment Casting of Hollow Turbine Blade Based on Stereolithography
,”
Rapid Prototyp. J.
,
15
(
4
), pp.
232
237
. 10.1108/13552540910979749
202.
Corcione
,
C.
,
Montagna
,
F.
,
Greco
,
A.
,
Licciulli
,
A.
, and
Maffezzoli
,
A.
,
2006
, “
Free Form Fabrication of Silica Moulds for Aluminium Casting by Stereolithography
,”
Rapid Prototyp. J.
,
12
(
4
), pp.
184
188
. 10.1108/13552540610682688
203.
Dufaud
,
O.
, and
Corbel
,
S.
,
2002
, “
Stereolithography of PZT Ceramic Suspensions
,”
Rapid Prototyp. J.
,
8
(
2
), pp.
83
90
. 10.1108/13552540210420952
204.
Eckel
,
Z.
,
Zhou
,
C.
,
Martin
,
J.
, and
Jocobsen
,
A. C. W. S. A.
,
2016
, “
Additive Manufacturing of Polymer-Derived Ceramics
,”
Science
,
351
(
58
).
205.
Cui
,
H.
,
Hensleigh
,
R.
,
Chen
,
H.
, and
Zheng
,
X.
,
2018
, “
Additive Manufacturing and Size-Dependent Mechanical Properties of Three-Dimensional Microarchitected, High-Temperature Ceramic Metamaterials
,”
J. Mater. Res.
,
33
(
3
), pp.
360
371
. 10.1557/jmr.2018.11
206.
Wang
,
C.
,
Ping
,
W.
,
Bai
,
Q.
,
Cui
,
H.
,
Hensleigh
,
R.
,
Wang
,
R.
,
Brozena
,
A.
,
Xu
,
Z.
,
Dai
,
J.
,
Pei
,
Y.
,
Zheng
,
C.
,
Pastel
,
G.
,
Gao
,
J.
,
Wang
,
X.
,
Wang
,
H.
,
Zhao
,
J.
,
Yang
,
B.
,
Zheng
,
X.
,
Luo
,
J.
,
Mo
,
Y.
,
Dunn
,
B.
, and
Hu
,
L.
,
2020
, “
A General Method to Synthesize and Sinter Bulk Ceramics in Seconds
,”
Science
,
368
(
6490
), pp.
521
526
. 10.1126/science.aaz7681.
207.
Griffin
,
E.
, and
McMillin
,
S.
,
1995
, “
Selective Laser Sintering and Fused Deposition Modelling Processes for Functional Ceramic Parts
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
208.
Agarwala
,
M.
,
van Weeren
,
R.
,
Yaidyanathan
,
R.
,
Bandyopadhyay
,
A.
,
Carrasquilo
,
G.
,
Jamalabad
,
V.
,
Langrana
,
N.
,
Safari
,
A.
,
Garofalini
,
S.
,
Danforth
,
S.
,
Burlew
,
J.
,
Donaldson
,
R.
,
Whalen
,
P.
, and
Ballard
,
C.
,
1995
, “
Structural Ceramics by Fused Deposition of Ceramics
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
209.
McIntosh
,
J.
,
Danforth
,
S.
, and
Jamalabad
,
V.
,
1997
, “
Shrinkage and Deformation in Components Manufactured by Fused Deposition of Ceramics
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
210.
Rangarajan
,
S.
,
Qi
,
Q.
,
Venkataraman
,
N.
,
Safari
,
A.
, and
Danforth
,
S.
,
2000
, “
Powder Processing, Rheology, and Mechanical Properties of Feedstock for Fused Deposition of Si3N4 Ceramics
,”
J. Am. Ceram. Soc.
,
83
(
7
), pp.
1663
1669
. 10.1111/j.1151-2916.2000.tb01446.x
211.
Cersarano
,
J.
,
1998
, “
A Review of Robocasting Technology
,”
MRS Proc.
,
542
. 10.1557/proc-542-133
212.
Cesarano
,
J.
,
Baer
,
T.
, and
Calvert
,
J.
,
1997
, “
Recent Developments in Freeform Fabrication of Dense Ceramics From Slurry Deposition
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
213.
Cesarano
,
J.
,
Segalman
,
R.
, and
Calvert
,
P.
,
1998
, “
Robocasting Provides Mould-Less Fabrication From Slurry Deposition
,”
Ceram. Ind.
,
148
, pp.
94
101
.
214.
Cesarano
,
J.
,
Baer
,
T.
, and
Calvert
,
J.
,
1997
, “
Recent Developments in Freeform Fabrication of Dense Ceramics From Slurry Deposition
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
215.
Roleček
,
J.
,
Pejchalová
,
L.
,
Martínez-Vázquez
,
F.
,
Miranda
,
G.
, and
Salamon
,
D.
,
2019
, “
Bioceramic Scaffolds Fabrication: Indirect 3D Printing Combined with ice-Templating vs. Robocasting
,”
J. Eur. Ceram. Soc.
,
39
(
4
), pp.
1595
1602
. 10.1016/j.jeurceramsoc.2018.12.006
216.
Eqtesadi
,
S.
,
Motealleh
,
A.
,
Miranda
,
P.
,
Pajares
,
A.
,
Lemos
,
A.
, and
Ferreira
,
J.
,
2014
, “
Robocasting of 45S5 Bioactive Glass Scaffolds for Bone Tissue Engineering
,”
J. Eur. Ceram. Soc.
,
34
(
1
), pp.
107
118
. 10.1016/j.jeurceramsoc.2013.08.003
217.
Doiphode
,
N.
,
Huang
,
T.
,
Leu
,
M.
,
Rahaman
,
M.
, and
Day
,
D.
,
2011
, “
Freeze Extrusion Fabrication of 13–93 Bioactive Glass Scaffolds for Bone Repair
,”
J. Mater. Sci.
,
22
(
3
), pp.
515
523
. 10.1007/s10856-011-4236-4
218.
Huang
,
T.
,
Mason
,
M.
,
Hilmas
,
G.
, and
Leu
,
M.
,
2006
, “
Freeze-Form Extrusion Fabrication of Ceramic Parts
,”
Int. J. Virtual Phys. Prototyp.
,
1
(
2
), pp.
93
100
. 10.1080/17452750600649609
219.
Huang
,
T.
,
Mason
,
M.
,
Hilmas
,
G.
, and
Leu
,
M.
,
2009
, “
Aqueous-Based Freeze-Form Extrusion Fabrication of Alumina Components
,”
Rapid Prototyp. J.
,
15
(
2
), pp.
88
95
. 10.1108/13552540910943388
220.
Chen
,
H.
,
Wang
,
X.
,
Xue
,
F.
,
Huang
,
Y.
,
Zhou
,
K.
, and
Zhang
,
D.
,
2018
, “
3D Printing of SiC Ceramic: Direct ink Writing with a Solution of Preceramic Polymers
,”
J. Eur. Ceram. Soc.
,
38
(
16
), pp.
5294
5300
. 10.1016/j.jeurceramsoc.2018.08.009
221.
Zocca
,
A.
,
Franchin
,
G.
,
Elsayed
,
H.
,
Gioffredi
,
E.
,
Bernardo
,
E.
,
Colombo
,
P.
, and
Bandyopadhyay
,
A.
,
2016
, “
Direct Ink Writing of a Preceramic Polymer and Fillers to Produce Hardystonite (Ca2ZnSi2O7) Bioceramic Scaffolds
,”
J. Am. Ceram. Soc.
,
99
(
6
), pp.
1960
1967
. 10.1111/jace.14213
222.
Franchin
,
G.
,
Wahl
,
L.
, and
Colombo
,
P.
,
2017
, “
Direct Ink Writing of Ceramic Matrix Composite Structures
,”
J. Am. Ceram. Soc.
,
100
(
10
), pp.
4397
4401
. 10.1111/jace.15045
223.
Larson
,
C.
,
Choi
,
J.
,
Gallardo
,
P.
,
Henderson
,
S.
,
Niemack
,
M.
,
Rajagopalan
,
G.
, and
Shepherd
,
R.
,
2016
, “
Direct Ink Writing of Silicon Carbide for Microwave Optics
,”
Adv. Eng. Mater.
,
18
(
1
), pp.
39
45
. 10.1002/adem.201500298
224.
Agarwala
,
M.
,
Klosterman
,
D.
,
Osborne
,
N.
, and
Lightman
,
A.
,
1999
, “
Hard Metal Tooling via SFF of Ceramics and Powder Metallurgy
,”
Solid Freeform Fabrication Symposium
,
Austin, TX
.
225.
Gomes
,
C.
,
Oliveira
,
A.
,
Hotza
,
D. T. N.
, and
Greil
,
P.
,
2008
, “
LZSA Glass-Ceramic Laminates: Fabrication and Mechanical Properties
,”
J. Mater. Process. Tech.
,
206
(
1–3
), pp.
194
201
. 10.1016/j.jmatprotec.2007.12.011
226.
Dautenbach
,
G. C. J.
, and
McMillin
,
S.
,
1994
, “
Desktop Manufacturing—LOM vs. Pressing
,”
Ceramic Bull.
,
73
(
8
), pp.
109
114
.
227.
Williams
,
C.
,
2008
, “
Design and Development of a Layer-Based Additive Manufacturing Process for the Realization of Metal Parts of Designed Mesostructure
,”
Ph.D. thesis
,
Georgia Institute of Technology
.
228.
Derby
,
B.
,
2015
, “
Additive Manufacture of Ceramics Components by Inkjet Printing
,”
Engineering
,
1
(
1
), pp.
113
123
. 10.15302/J-ENG-2015014
229.
Wilkinson
,
N.
,
Smith
,
M.
,
Kay
,
R.
, and
Harris
,
R.
,
2019
, “
A Review of Aerosol Jet Printing—A Non-Traditional Hybrid Process for Micro-Manufacturing
,”
Int. J. Adv. Manuf. Technol.
, pp.
1
21
. 10.1007/s00170-019-03438-2
230.
Hanft
,
D.
,
Exner
,
J.
,
Schubert
,
M.
,
Stöcker
,
T.
,
Fuierer
,
P.
, and
Moos
,
R.
,
2015
, “
An Overview of the Aerosol Deposition Method
,”
Process Fundamentals and New Trends in Materials Applications
.
231.
Lee
,
B.
,
Jung
,
J.
,
Hahn
,
B.
,
Yoon
,
W.
,
Park
,
D.
,
Choi
,
J.
,
Ryu
,
J.
,
Kim
,
J.
, and
Ahn C
,
S. K.
,
2011
, “
Dense Yttria Film Deposited on a Plasma-Sprayed Al2O3 Coating by Aerosol Deposition
,”
J. Ceram. Sci. Tech.
,
2
(
4
), pp.
197
202
.
232.
Akedo
,
J.
, and
Lebedev
,
M.
,
1999
, “
Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr52Ti48)O3) Thick Films Deposited by Aerosol Deposition Method
,”
Jpn. J. Appl. Phys.
,
38
(
9B
), pp.
5397
5401
. 10.1143/JJAP.38.5397
233.
Lebedev
,
M.
,
Akedo
,
J.
, and
Ito
,
T.
,
2005
, “
Substrate Heating Effects on Hardness of an a-Al2O3 Thick Film Formed by Aerosol Deposition Method
,”
J. Cryst. Growth
,
275
(
1–2
), pp.
1301
1306
. 10.1016/j.jcrysgro.2004.11.109
234.
Iwasawa
,
J.
,
Nishimizu
,
R.
,
Tokita
,
M.
,
Kiyohara
,
M.
, and
Uematsu
,
K.
,
2007
, “
Plasma-Resistant Dense Yttrium Oxide Film Prepared by Aerosol Deposition Process
,”
J. Am. Ceram. Soc.
,
90
(
8
), pp.
2327
2332
. 10.1111/j.1551-2916.2007.01738.x
You do not currently have access to this content.