Abstract

Modeling the dynamic behavior of a machine tool accurately is a difficult but crucial task when optimizing a machine tool’s design. An accurate representation of the real behavior is essential to ensure the transferability of simulations from a virtual prototype to a physical prototype. Due to the complexity of modern machine tools, a large number of parameters have an influence on the dynamic behavior. The parameterization of the used dynamic models is still challenging, especially if intricate local models are used for the individual effects. This paper presents an efficient framework for parameterizing a dynamic model of a machine tool containing linear local damping and stiffness parameters. For parameter identification, measurements of single components on simple test rigs as well as measurements of the whole machine tool were carried out. Different numerical optimization algorithms as well as objective functions were compared and applied to a three-axis machine tool structure for parameter fitting. By using a parametric reduced-order flexible multibody model for the fitting, high accuracy can be combined with high computational efficiency. The use of the presented approach allows an efficient parameter estimation and lays the groundwork for an influence analysis and the targeted optimization of a machine tool.

References

References
1.
Altintas
,
Y.
,
Brecher
,
C.
,
Weck
,
M.
, and
Witt
,
S.
,
2005
, “
Virtual Machine Tool
,”
CIRP Ann. Manuf. Technol.
,
54
(
2
), pp.
115
138
. 10.1016/S0007-8506(07)60022-5
2.
Brecher
,
C.
,
Fey
,
M.
,
Tenbrock
,
C.
, and
Daniels
,
M.
,
2016
, “
Multipoint Constraints for Modeling of Machine Tool Dynamics
,”
ASME J. Manuf. Sci. Eng.
,
138
(
5
), p.
051006
. 10.1115/1.4031771
3.
Semm
,
T.
,
Nierlich
,
M. B.
, and
Zaeh
,
M. F.
,
2019
, “
Substructure Coupling of a Machine Tool in Arbitrary Axis Positions Considering Local Linear Damping Models
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071014
. 10.1115/1.4043767
4.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
. 10.1115/1.4023453
5.
Lanz
,
N.
,
Spescha
,
D.
,
Weikert
,
S.
, and
Wegener
,
K.
,
2018
, “
Efficient Static and Dynamic Modelling of Machine Structures With Large Linear Motions
,”
Int. J. Autom. Technol.
,
12
(
5
), pp.
622
630
. 10.20965/ijat.2018.p0622
6.
Law
,
M.
,
Altintas
,
Y.
, and
Srikantha Phani
,
A.
,
2013
, “
Rapid Evaluation and Optimization of Machine Tools With Position-Dependent Stability
,”
Int. J. Mach. Tools Manuf.
,
68
, pp.
81
90
. 10.1016/j.ijmachtools.2013.02.003
7.
de Fonseca
,
P.
,
2000
, “
Simulation and Optimisation of the Dynamic Behaviour of Mechatronic Systems
,”
Ph.D. thesis
,
Katholieke Universiteit Leuven
,
Leuven
.
8.
Friswell
,
M. I.
, and
Mottershead
,
J. E.
,
1995
,
Finite Element Model Updating in Structural Dynamics
, Vol.
38
,
Springer
,
New York
.
9.
Großmann
,
K.
,
Rudolph
,
H.
,
Brecher
,
C.
,
Fey
,
M.
,
Zäh
,
M. F.
,
Niehues
,
K.
, and
Schwarz
,
S.
,
2010
, “
Dämpfungseffekte in Werkzeugmaschinen
,”
ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb
,
105
(
7–8
), pp.
676
680
. 10.3139/104.110359
10.
Zaeh
,
M. F.
,
Rebelein
,
C.
, and
Semm
,
T.
,
2019
, “
Predictive Simulation of Damping Effects in Machine Tools
,”
CIRP Ann. Manuf. Technol.
,
68
(
1
), pp.
393
396
. 10.1016/j.cirp.2019.03.018
11.
Brecher
,
C.
,
Fey
,
M.
, and
Bäumler
,
S.
,
2013
, “
Damping Models for Machine Tool Components of Linear Axes
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
399
402
. 10.1016/j.cirp.2013.03.142
12.
Niehues
,
K. K.
,
2015
, “
Identifikation Linearer Dämpfungsmodelle Für Werkzeugmaschinenstrukturen
,”
Ph.D. thesis
,
Technical University Munich
,
Munich
.
13.
Brecher
,
C.
,
Fey
,
M.
, and
Bäumler
,
S.
,
2012
, “
Identification Method for Damping Parameters of Roller Linear Guides
,”
Prod. Eng.
,
6
(
4–5
), pp.
505
512
. 10.1007/s11740-012-0400-z
14.
Ren
,
W.-X.
, and
Chen
,
H.-B.
,
2010
, “
Finite Element Model Updating in Structural Dynamics by Using the Response Surface Method
,”
Eng. Struct.
,
32
(
8
), pp.
2455
2465
. 10.1016/j.engstruct.2010.04.019
15.
Hernandez-Vazquez
,
J.
,
Garitaonandia
,
I.
,
Fernandes
,
M.
,
Munoa
,
J.
, and
Lacalle
,
L.
,
2018
, “
A Consistent Procedure Using Response Surface Methodology to Identify Stiffness Properties of Connections in Machine Tools
,”
Materials
,
11
(
7
), p.
1220
. 10.3390/ma11071220
16.
Apprich
,
S.
,
Wulle
,
F.
,
Pott
,
A.
, and
Verl
,
A.
,
2016
, “
Online Parameter Identification for a Linear Parameter-Varying Model of Large-Scale Lightweight Machine Tool Structures With Pose-Dependent Dynamic Behavior
,”
2016 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Banff, Canada
,
July 12–15
, pp.
1558
1563
.
17.
Hernandez-Vazquez
,
J. M.
,
Garitaonandia
,
I.
,
Fernandes
,
M. H.
,
Albizuri
,
J.
, and
Munoa
,
J.
,
2014
, “
Comparison of Updating Strategies to Improve Finte Element Models of Multi-Axis Machine Tools
,”
9th International Conference on Structural Dynamics, EURODYN
,
Porto, Portugal
,
June 30–July 2
, pp.
1837
1843
.
18.
Garitaonandia
,
I.
,
Fernandes
,
M. H.
, and
Albizuri
,
J.
,
2008
, “
Dynamic Model of a Centerless Grinding Machine Based on an Updated Fe Model
,”
Int. J. Mach. Tools Manuf.
,
48
(
7–8
), pp.
832
840
. 10.1016/j.ijmachtools.2007.12.001
19.
Zhou
,
S.
, and
Sun
,
B. B.
,
2017
, “
Parameter Identification and Optimization of Slide Guide Joint of CNC Machine Tools
,”
International Conference on Material Engineering and Manufacturing (ICMEM 2017)
,
Chengdu, China
,
Oct. 9–11
, p.
265
. 10.1088/1757-899X/265/1/012025
20.
Zhu
,
J.
,
Zhang
,
T.
,
Wang
,
J.
, and
Li
,
X.
,
2016
, “
Axial Dynamic Characteristic Parameters Identification of Rolling Joints in a Ball Screw Feed Drive System
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
14
), pp.
2449
2462
. 10.1177/0954406215597955
21.
Witt
,
S. T.
,
2007
, “
Integrierte Simulation Von Maschine, Werkstück Und Spanendem Fertigungsprozess
,”
Ph.D. thesis
,
RWTH Aachen
,
Aachen
.
22.
Rebelein
,
C.
,
Vlacil
,
J.
, and
Zaeh
,
M. F.
,
2016
, “
Modeling of the Dynamic Behavior of Machine Tools
,”
Prod. Eng. Res. Dev.
,
11
(
2
), pp.
61
74
. 10.1007/s11740-016-0704-5
23.
Zaeh
,
M. F.
,
Oertli
,
T.
, and
Milberg
,
J.
,
2004
, “
Finite Element Modelling of Ball Screw Feed Drive Systems
,”
CIRP Ann. Manuf. Technol.
,
53
(
1
), pp.
289
292
. 10.1016/S0007-8506(07)60700-8
24.
Rebelein
,
C.
, and
Zaeh
,
M. F.
,
2016
, “
Friction in Feed Drives of Machine Tools Investigation, Modeling and Validation
,”
Prod. Eng. Res. Dev.
,
10
(
4–5
), pp.
497
507
. 10.1007/s11740-016-0678-3
25.
Semm
,
T.
,
Spannagl
,
M. F.
, and
Zaeh
,
M. F.
,
2018
, “
Dynamic Substructuring of Machine Tools Considering Local Damping Models
,”
Procedia CIRP
,
77
, pp.
670
674
. 10.1016/j.procir.2018.08.180
26.
Ewins
,
D. J.
,
2000
,
Modal Testing: Theory, Practice and Application
, Vol.
10
, 2nd ed.,
Wiley-Blackwell
,
Hoboken, NJ
.
27.
Lee
,
D.
,
Ahn
,
T.-S.
, and
Kim
,
H.-S.
,
2018
, “
A Metric on the Similarity Between Two Frequency Response Functions
,”
J. Sound Vib.
,
436
, pp.
32
45
. 10.1016/j.jsv.2018.08.051
28.
Haapaniemi
,
H.
,
Luukkanen
,
P.
,
Nurkkala
,
P.
,
Rostedt
,
J.
, and
Saarenheimo
,
A.
,
2003
, “
Correlation Analysis of Modal Analysis Results From a Pipeline
,” MAC-XXI:
A Conference & Exposition on Structural Dynamics
,
Kissimmee, FL
,
Feb. 3–6
, pp.
398
406
.
29.
Gallina
,
A.
,
Pichler
,
L.
, and
Uhl
,
T.
,
2011
, “
Enhanced Meta-Modelling Technique for Analysis of Mode Crossing, Mode Veering and Mode Coalescence in Structural Dynamics
,”
Mech. Syst. Signal Process.
,
25
(
7
), pp.
2297
2312
. 10.1016/j.ymssp.2011.02.020
30.
Schwarz
,
S. A.
,
2015
, “
Prognosefähigkeit Dynamischer Simulationen von Werkzeugmaschinenstrukturen
,”
Ph.D. thesis
,
Technical University Munich
,
Munich
.
31.
Rebelein
,
C.
,
2019
, “
Prognosefähige Simulation Von Dämpfungseffekten in Mechatronischen Werkzeugmaschinenstrukturen
,”
Ph.D. thesis
,
Technical University Munich
,
Munich
.
32.
Maia
,
N.
, and
Manuel
,
M.
,
1997
,
Theoretical and Experimental Modal Analysis
, Vol.
9
,
Wiley-Blackwell
,
Taunton
.
33.
Pastor
,
M.
,
Binda
,
M.
, and
Harčarik
,
T.
,
2012
, “
Modal Assurance Criterion
,”
Procedia Eng.
,
48
, pp.
543
548
. 10.1016/j.proeng.2012.09.551
34.
Meyer
,
M.
,
2017
,
Signalverarbeitung: Analoge und digitale Signale, Systeme und Filter
, 8th ed.,
Springer Verlag
,
New York
.
You do not currently have access to this content.