Abstract

Measuring rotating tool-tip frequency response functions (FRFs) is difficult because of the fluted tip geometry. The methods based on receptance coupling substructure analysis (RCSA) can obtain rotating tool-tip FRFs with a few tests. Existing RCSA-based methods require at least one smooth rod for measurement and then mathematically calculate the desired rotating tool-tip FRFs. However, involving the inverse of the experimentally obtained FRFs matrix, these methods are susceptible to the measurement noise in the rotating structure. In addition, the inconsistency between the holder–tool and holder–rod connections is another uncertainty which impacts accuracy. This paper presents a robust RCSA-based method to obtain rotating tool-tip FRFs. It is found that tool-tip FRFs can be calculated from another point FRFs on the same assembly. Then, one point on the smooth cylindrical shank of the tool is selected for measurement. The measured FRFs, along with those from the theoretical tool model, calculate the rotating tool-tip FRFs. Compared with the previous methods, the proposed one does not require inverting the measured FRFs matrix, inherently avoiding amplification of measurement noise. Since the tool replacement is no longer required, in situ measurement is achieved to ensure the same holder–tool connection throughout the procedure. The proposed method is first validated in a numerical case and then verified experimentally by a commercial hammer and laser vibrometer. Both results show that the method is insensitive to the measurement noise and can obtain rotating tool-tip FRFs with considerable accuracy.

References

References
1.
Quintana
,
G.
, and
Ciurana
,
J.
,
2011
, “
Chatter in Machining Processes: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
5
), pp.
363
376
. 10.1016/j.ijmachtools.2011.01.001
2.
Honeycutt
,
A.
, and
Schmitz
,
T. L.
,
2018
, “
Milling Bifurcations: A Review of Literature and Experiment
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
120801
. 10.1115/1.4041325
3.
Munoa
,
J.
,
Beudaert
,
X.
,
Dombovari
,
Z.
,
Altintas
,
Y.
,
Budak
,
E.
,
Brecher
,
C.
, and
Stepan
,
G.
,
2016
, “
Chatter Suppression Techniques in Metal Cutting
,”
CIRP Ann.
,
65
(
2
), pp.
785
808
. 10.1016/j.cirp.2016.06.004
4.
Altintaş
,
Y.
, and
Budak
,
E.
,
1995
, “
Analytical Prediction of Stability Lobes in Milling
,”
CIRP Ann.
,
44
(
1
), pp.
357
362
. 10.1016/S0007-8506(07)62342-7
5.
Merdol
,
S.
, and
Altintas
,
Y.
,
2004
, “
Multi Frequency Solution of Chatter Stability for Low Immersion Milling
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
459
466
. 10.1115/1.1765139
6.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(
5
), pp.
503
518
. 10.1002/nme.505
7.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2011
, “
Numerical Integration Method for Prediction of Milling Stability
,”
ASME J. Manuf. Sci. Eng.
,
133
(
3
), p.
031005
. 10.1115/1.4004136
8.
Niu
,
J.
,
Ding
,
Y.
,
Geng
,
Z.
,
Zhu
,
L.
, and
Ding
,
H.
,
2018
, “
Patterns of Regenerative Milling Chatter Under Joint Influences of Cutting Parameters, Tool Geometries, and Runout
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121004
. 10.1115/1.4041250
9.
Wang
,
X.
,
Bi
,
Q.
,
Chen
,
T.
,
Zhu
,
L.
, and
Ding
,
H.
,
2019
, “
Transient Vibration Analysis Method for Predicting the Transient Behavior of Milling With Variable Spindle Speeds
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051009
. 10.1115/1.4043265
10.
Altintas
,
Y.
,
2012
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibration, and CNC Design
,
Cambridge University Press
,
Cambridge, UK
.
11.
Gagnol
,
V.
,
Bouzgarrou
,
B.
,
Ray
,
P.
, and
Barra
,
C.
,
2007
, “
Model-based Chatter Stability Prediction for High-Speed Spindles
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1176
1186
. 10.1016/j.ijmachtools.2006.09.002
12.
Lu
,
X.
,
Jia
,
Z.
,
Liu
,
S.
,
Yang
,
K.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2019
, “
Chatter Stability of Micro-Milling by Considering the Centrifugal Force and Gyroscopic Effect of the Spindle
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111003
. 10.1115/1.4044520
13.
Zaghbani
,
I.
, and
Songmene
,
V.
,
2009
, “
Estimation of Machine-Tool Dynamic Parameters During Machining Operation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
947
957
. 10.1016/j.ijmachtools.2009.06.010
14.
Li
,
B.
,
Cai
,
H.
,
Mao
,
X.
,
Huang
,
J.
, and
Luo
,
B.
,
2013
, “
Estimation of CNC Machine–Tool Dynamic Parameters Based on Random Cutting Excitation Through Operational Modal Analysis
,”
Int. J. Mach. Tools Manuf.
,
71
, pp.
26
40
. 10.1016/j.ijmachtools.2013.04.001
15.
Matsubara
,
A.
,
Tsujimoto
,
S.
, and
Kono
,
D.
,
2015
, “
Evaluation of Dynamic Stiffness of Machine Tool Spindle by Non-Contact Excitation Tests
,”
CIRP Ann.
,
64
(
1
), pp.
365
368
. 10.1016/j.cirp.2015.04.101
16.
Tlalolini
,
D.
,
Ritou
,
M.
,
Rabréau
,
C.
,
Le Loch
,
S.
, and
Furet
,
B.
,
2018
, “
Modeling and Characterization of an Electromagnetic System for the Estimation of Frequency Response Function of Spindle
,”
Mech. Syst. Signal Process.
,
104
, pp.
294
304
. 10.1016/j.ymssp.2017.11.003
17.
Postel
,
M.
,
Aslan
,
D.
,
Wegener
,
K.
, and
Altintas
,
Y.
,
2019
, “
Monitoring of Vibrations and Cutting Forces With Spindle Mounted Vibration Sensors
,”
CIRP Ann.
,
68
(
1
), pp.
413
416
. 10.1016/j.cirp.2019.03.019
18.
Cao
,
H.
,
Li
,
B.
, and
He
,
Z.
,
2012
, “
Chatter Stability of Milling With Speed-Varying Dynamics of Spindles
,”
Int. J. Mach. Tools Manuf.
,
52
(
1
), pp.
50
58
. 10.1016/j.ijmachtools.2011.09.004
19.
Özşahin
,
O.
,
Budak
,
E.
, and
Özgüven
,
H. N.
,
2015
, “
In-process Tool Point FRF Identification Under Operational Conditions Using Inverse Stability Solution
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
64
73
. 10.1016/j.ijmachtools.2014.09.014
20.
Grossi
,
N.
,
Sallese
,
L.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2017
, “
Improved Experimental-Analytical Approach to Compute Speed-Varying Tool-Tip FRF
,”
Precis. Eng.
,
48
, pp.
114
122
. 10.1016/j.precisioneng.2016.11.011
21.
Faassen
,
R.
,
Van de Wouw
,
N.
,
Oosterling
,
J.
, and
Nijmeijer
,
H.
,
2003
, “
Prediction of Regenerative Chatter by Modelling and Analysis of High-Speed Milling
,”
Int. J. Mach. Tools Manuf.
,
43
(
14
), pp.
1437
1446
. 10.1016/S0890-6955(03)00171-8
22.
Cheng
,
C.-H.
,
Schmitz
,
T. L.
, and
Scott Duncan
,
G.
,
2007
, “
Rotating Tool Point Frequency Response Prediction Using RCSA
,”
Mach. Sci. Technol.
,
11
(
3
), pp.
433
446
.
23.
Yan
,
R.
,
Tang
,
X.
,
Peng
,
F.
,
Li
,
Y.
, and
Li
,
H.
,
2017
, “
RCSA-based Method for Tool Frequency Response Function Identification Under Operational Conditions Without Using Noncontact Sensor
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061009
. 10.1115/1.4035418
24.
Semm
,
T.
,
Nierlich
,
M. B.
, and
Zaeh
,
M. F.
,
2019
, “
Substructure Coupling of a Machine Tool in Arbitrary Axis Positions Considering Local Linear Damping Models
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071014
. 10.1115/1.4043767
25.
Postel
,
M.
,
Özşahin
,
O.
, and
Altintas
,
Y.
,
2018
, “
High Speed Tooltip FRF Predictions of Arbitrary Tool-Holder Combinations Based on Operational Spindle Identification
,”
Int. J. Mach. Tools Manuf.
,
129
, pp.
48
60
. 10.1016/j.ijmachtools.2018.03.004
26.
Bediz
,
B.
,
Gozen
,
B. A.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2014
, “
Dynamics of Ultra-High-Speed (UHS) Spindles Used for Micromachining
,”
Int. J. Mach. Tools Manuf.
,
87
, pp.
27
38
. 10.1016/j.ijmachtools.2014.07.007
27.
Schmitz
,
T. L.
, and
Donalson
,
R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann.
,
49
(
1
), pp.
303
308
. 10.1016/S0007-8506(07)62951-5
28.
Schmitz
,
T. L.
,
Davies
,
M. A.
,
Medicus
,
K.
, and
Snyder
,
J.
,
2001
, “
Improving High-Speed Machining Material Removal Rates by Rapid Dynamic Analysis
,”
CIRP Ann.
,
50
(
1
), pp.
263
268
. 10.1016/S0007-8506(07)62119-2
29.
Schmitz
,
T. L.
,
Davies
,
M. A.
, and
Kennedy
,
M. D.
,
2001
, “
Tool Point Frequency Response Prediction for High-Speed Machining by RCSA
,”
ASME J. Manuf. Sci. Eng.
,
123
(
4
), pp.
700
707
. 10.1115/1.1392994
30.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
. 10.1115/1.2039102
31.
Park
,
S. S.
,
Altintas
,
Y.
, and
Movahhedy
,
M.
,
2003
, “
Receptance Coupling for End Mills
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
889
896
. 10.1016/S0890-6955(03)00088-9
32.
Albertelli
,
P.
,
Goletti
,
M.
, and
Monno
,
M.
,
2013
, “
A New Receptance Coupling Substructure Analysis Methodology to Improve Chatter Free Cutting Conditions Prediction
,”
Int. J. Mach. Tools Manuf.
,
72
, pp.
16
24
. 10.1016/j.ijmachtools.2013.05.003
33.
Ji
,
Y.
,
Bi
,
Q.
,
Zhang
,
S.
, and
Wang
,
Y.
,
2018
, “
A New Receptance Coupling Substructure Analysis Methodology to Predict Tool Tip Dynamics
,”
Int. J. Mach. Tools Manuf.
,
126
, pp.
18
26
. 10.1016/j.ijmachtools.2017.12.002
34.
Kumar
,
U. V.
, and
Schmitz
,
T. L.
,
2012
, “
Spindle Dynamics Identification for Receptance Coupling Substructure Analysis
,”
Precis. Eng.
,
36
(
3
), pp.
435
443
. 10.1016/j.precisioneng.2012.01.007
35.
Ertürk
,
A.
,
Özgüven
,
H.
, and
Budak
,
E.
,
2006
, “
Analytical Modeling of Spindle–Tool Dynamics on Machine Tools Using Timoshenko Beam Model and Receptance Coupling for the Prediction of Tool Point FRF
,”
Int. J. Mach. Tools Manuf.
,
46
(
15
), pp.
1901
1912
. 10.1016/j.ijmachtools.2006.01.032
36.
Özşahin
,
O.
, and
Altintas
,
Y.
,
2015
, “
Prediction of Frequency Response Function (FRF) of Asymmetric Tools From the Analytical Coupling of Spindle and Beam Models of Holder and Tool
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
31
40
. 10.1016/j.ijmachtools.2015.03.001
37.
Özşahin
,
O.
,
Ertürk
,
A.
,
Özgüven
,
H. N.
, and
Budak
,
E.
,
2009
, “
A Closed-Form Approach for Identification of Dynamical Contact Parameters in Spindle–Holder–Tool Assemblies
,”
Int. J. Mach. Tools Manuf.
,
49
(
1
), pp.
25
35
. 10.1016/j.ijmachtools.2008.08.007
38.
Schmitz
,
T.
,
Honeycutt
,
A.
,
Gomez
,
M.
,
Stokes
,
M.
, and
Betters
,
E.
,
2019
, “
Multi-point Coupling for Tool Point Receptance Prediction
,”
J. Manuf. Processes
,
43
, pp.
2
11
. 10.1016/j.jmapro.2019.03.043
39.
Namazi
,
M.
,
Altintas
,
Y.
,
Abe
,
T.
, and
Rajapakse
,
N.
,
2007
, “
Modeling and Identification of Tool Holder–Spindle Interface Dynamics
,”
Int. J. Mach. Tools Manuf.
,
47
(
9
), pp.
1333
1341
. 10.1016/j.ijmachtools.2006.08.003
40.
Yang
,
Y.
,
Wan
,
M.
,
Ma
,
Y.-C.
, and
Zhang
,
W.-H.
,
2016
, “
An Improved Method for Tool Point Dynamics Analysis Using a Bi-distributed Joint Interface Model
,”
Int. J. Mech. Sci.
,
105
, pp.
239
252
. 10.1016/j.ijmecsci.2015.11.014
41.
Lu
,
X.
,
Jia
,
Z.
,
Zhang
,
H.
,
Liu
,
S.
,
Feng
,
Y.
, and
Liang
,
S. Y.
,
2017
, “
Tool Point Frequency Response Prediction for Micromilling by Receptance Coupling Substructure Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071004
. 10.1115/1.4035491
42.
Kivanc
,
E.
, and
Budak
,
E.
,
2004
, “
Structural Modeling of End Mills for Form Error and Stability Analysis
,”
Int. J. Mach. Tools Manuf.
,
44
(
11
), pp.
1151
1161
. 10.1016/j.ijmachtools.2004.04.002
43.
Ertürk
,
A.
,
Özgüven
,
H.
, and
Budak
,
E.
,
2007
, “
Effect Analysis of Bearing and Interface Dynamics on Tool Point FRF for Chatter Stability in Machine Tools by Using a New Analytical Model for Spindle–Tool Assemblies
,”
Int. J. Mach. Tools Manuf.
,
47
(
1
), pp.
23
32
. 10.1016/j.ijmachtools.2006.03.001
44.
Xi
,
S.
,
Cao
,
H.
, and
Chen
,
X.
,
2019
, “
Dynamic Modeling of Spindle Bearing System and Vibration Response Investigation
,”
Mech. Syst. Signal Process.
,
114
, pp.
486
511
. 10.1016/j.ymssp.2018.05.028
45.
Montevecchi
,
F.
,
Grossi
,
N.
,
Scippa
,
A.
, and
Campatelli
,
G.
,
2017
, “
Two-Points-based Receptance Coupling Method for Tool-Tip Dynamics Prediction
,”
Mach. Sci. Technol.
,
21
(
1
), pp.
136
156
. 10.1080/10910344.2016.1260435
46.
Ewins
,
D. J.
,
1984
,
Modal Testing: Theory and Practice
, Vol.
15
,
Research Studies Press
,
Letchworth
.
47.
Wan
,
M.
,
Gao
,
T.-Q.
,
Feng
,
J.
, and
Zhang
,
W.-H.
,
2019
, “
On Improving Chatter Stability of Thin-Wall Milling by Prestressing
,”
J. Mater. Process. Technol.
,
264
, pp.
32
44
. 10.1016/j.jmatprotec.2018.08.042
48.
Schmitz
,
T. L.
, and
Smith
,
K. S.
,
2014
,
Machining Dynamics
,
Springer
,
New York
.
You do not currently have access to this content.