Abstract

Plunge milling has been proven to be an efficient strategy for machining of pockets with deep cavities and difficult-to-cut material. Previous work generates the plunge toolpath mainly by controlling the radial cutting width within the given value. However, uneven tool engagement angles may lead to excessive tool load and tool load fluctuations, which has a negative influence on tool life. In this study, a universal plunge milling toolpath generation method is proposed to improve tool life by decreasing the maximum tool engagement angle. A series of concentric circles with constant radius increment is utilized to generate a toolpath with constant cutting radial depth. Center of the concentric circle is determined based on the pocket contour. New detailed algorithms to generate plunge toolpath for basic cases have been developed. An automatic pocket subdivision algorithm has been developed by dividing the pocket into several subregions that are easy to be machined. Without loss of generality, the method is applicable for both open and closed pockets. It also works for pockets with and without islands inside. The method is implemented and verified successfully by machining experiments. The results provide strong evidence that the proposed method can reduce the maximum engagement angle over the entire toolpath and thus improve the tool life.

References

References
1.
Wang
,
J.
,
Luo
,
M.
,
Xu
,
K.
, and
Tang
,
K.
,
2019
, “
Generation of Tool-Life-Prolonging and Chatter-Free Efficient Toolpath for Five-Axis Milling of Freeform Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031001
. 10.1115/1.4041949
2.
Xu
,
J.
,
Ji
,
Y.
,
Sun
,
Y.
, and
Lee
,
Y. S.
,
2018
, “
Spiral Tool Path Generation Method on Mesh Surfaces Guided by Radial Curves
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071016
. 10.1115/1.4039918
3.
Lin
,
Z.
,
Fu
,
J.
,
Shen
,
H.
,
Gan
,
W.
, and
Yue
,
S.
,
2015
, “
Tool Path Generation for Multi-Axis Freeform Surface Finishing With the LKH TSP Solver
,”
Comput.-Aided Des.
,
69
, pp.
51
61
. 10.1016/j.cad.2015.07.002
4.
Huang
,
N.
,
Lynn
,
R.
, and
Kurfess
,
T.
,
2017
, “
Aggressive Spiral Toolpaths for Pocket Machining Based on Medial Axis Transformation
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051011
. 10.1115/1.4035720
5.
Xu
,
K.
,
Wu
,
B.
,
Li
,
Z.
, and
Tang
,
K.
,
2019
, “
Time-efficient Trochoidal Tool Path Generation for Milling Arbitrary Curved Slots
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031008
. 10.1115/1.4042052
6.
Cafieri
,
S.
,
Monies
,
F.
,
Mongeau
,
M.
, and
Bes
,
C.
,
2016
, “
Plunge Milling Time Optimization via Mixed-Integer Nonlinear Programming
,”
Comput. Ind. Eng.
,
98
, pp.
434
445
. 10.1016/j.cie.2016.06.015
7.
Zhuang
,
K.
,
Xu
,
X.
,
Xiao
,
R.
,
Zhu
,
D.
,
Guo
,
S.
, and
Yan
,
S.
,
2017
, “
Mechanistic Cutting Force Prediction Model for Plunge Milling Considering Cutter Runout
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa
,
FL, Nov. 3–9
.
8.
Danis
,
I.
,
Monies
,
F.
,
Lagarrigue
,
P.
, and
Wojtowicz
,
N.
,
2016
, “
Cutting Forces and Their Modelling in Plunge Milling of Magnesium-Rare Earth Alloys
,”
Int. J. Adv. Manuf. Technol.
,
84
(
9–12
), pp.
1801
1820
. 10.1007/s00170-015-7826-3
9.
Sun
,
T.
,
Fu
,
Y.
,
He
,
L.
,
Chen
,
X. M.
,
Zhang
,
W. G.
,
Chen
,
W.
, and
Su
,
X. B.
,
2016
, “
Machinability of Plunge Milling for Damage-Tolerant Titanium Alloy TC21
,”
Int. J. Adv. Manuf. Technol.
,
85
(
5–8
), pp.
1315
1323
. 10.1007/s00170-015-8022-1
10.
Altintas
,
Y.
, and
Ko
,
J. H.
,
2006
, “
Chatter Stability of Plunge Milling
,”
CIRP Ann.
,
55
(
1
), pp.
361
364
. 10.1016/S0007-8506(07)60435-1
11.
Ko
,
J. H.
, and
Altintas
,
Y.
,
2007
, “
Dynamics and Stability of Plunge Milling Operations
,”
ASME J. Manuf. Sci. Eng.
,
129
(
1
), pp.
32
40
. 10.1115/1.2383070
12.
Qiu
,
W.
,
Liu
,
Q.
,
Ding
,
J.
, and
Yuan
,
S.
,
2016
, “
Cutting Force Prediction in Orthogonal Turn-Milling by Directly Using Engagement Boundaries
,”
Int. J. Adv. Manuf. Technol.
,
86
(
1–4
), pp.
963
975
. 10.1007/s00170-015-8173-0
13.
Damir
,
A.
,
Ng
,
E. G.
, and
Elbestawi
,
M.
,
2011
, “
Force Prediction and Stability Analysis of Plunge Milling of Systems With Rigid and Flexible Workpiece
,”
Int. J. Adv. Manuf. Technol.
,
54
(
9–12
), pp.
853
877
. 10.1007/s00170-010-2982-y
14.
Witty
,
M.
,
Bergs
,
T.
,
Schäfer
,
A.
, and
Cabral
,
G.
,
2012
, “
Cutting Tool Geometry for Plunge Milling–Process Optimization for a Stainless Steel
,”
Procedia CIRP
,
1
, pp.
506
511
. 10.1016/j.procir.2012.04.090
15.
Ko
,
J. H.
,
2014
, “
Time Domain Prediction of Side and Plunge Milling Stability Considering Edge Radius Effect
,”
Procedia CIRP
,
14
, pp.
153
158
. 10.1016/j.procir.2014.03.077
16.
Chen
,
Z. C.
, and
Abdelkhalek
,
S.
,
2014
, “
A New Approach to Planning Plungers Paths for Efficient 2½-Axis Computer Numerically Controlled Plunge Milling of Complex Pockets With Islands
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041013
. 10.1115/1.4027538
17.
Sun
,
C.
,
Wang
,
Y. H.
, and
Huang
,
N. D.
,
2015
, “
A New Plunge Milling Tool Path Generation Method for Radial Depth Control Using Medial Axis Transform
,”
Int. J. Adv. Manuf. Technol.
,
76
(
9–12
), pp.
1575
1582
. 10.1007/s00170-014-6375-5
18.
Shi
,
Y.
, and
Zheng
,
G.
,
2017
, “
The Algorithm of Layering Calculation for Corner Plunge Milling Tool Path
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2059
2075
. 10.1007/s00170-016-9942-0
19.
Zhuang
,
K.
,
Xu
,
X.
,
Xiao
,
R.
,
Zhu
,
D.
,
Guo
,
S.
, and
Yan
,
S.
,
2017
, “
Mechanistic Cutting Force Prediction Model for Plunge Milling Considering Cutter Runout
,”
ASME 2017 International Mechanical Engineering Congress and Exposition
,
Tampa, FL
,
Nov. 3–9
, pp.
3434
3437
.
20.
Huang
,
N.
,
Jin
,
Y.
,
Lu
,
Y.
, and
Wu
,
S.
,
2018
, “
Plunge Milling With Constant Scallop Height by Adaptively Modifying the Step Interval for Pocket Wall
,”
Int. J. Adv. Manuf. Technol.
,
101
(
1–4
), pp.
203
208
. 10.1007/s00170-018-2912-y
21.
Ren
,
J. X.
,
Yao
,
C. F.
,
Zhang
,
D. H.
,
Xue
,
Y. L.
, and
Liang
,
Y. S.
,
2009
, “
Research on Tool Path Planning Method of Four-Axis High-Efficiency Slot Plunge Milling for Open Blisk
,”
Int. J. Adv. Manuf. Technol.
,
45
(
1–2
), pp.
101
109
. 10.1007/s00170-009-2153-1
22.
Zhang
,
Y.
,
Zhang
,
D.
, and
Han
,
F.
,
2017
, “
An Approach to Tool Path Planning for Layered Plunge Milling of Free-Form Surface Impeller Channel
,”
Int. J. Manuf. Res.
,
12
(
1
), pp.
131
144
. 10.1504/IJMR.2017.083653
23.
Sun
,
C.
,
Bi
,
Q.
,
Wang
,
Y.
, and
Huang
,
N.
,
2015
, “
Improving Cutter Life and Cutting Efficiency of Five-Axis Plunge Milling by Simulation and Tool Path Regeneration
,”
Int. J. Adv. Manuf. Technol.
,
77
(
5–8
), pp.
965
972
. 10.1007/s00170-014-6515-y
24.
Dong
,
J.
,
Chang
,
Z.
,
Chang
,
Y.
,
Chen
,
Z. C.
, and
Wan
,
N.
,
2018
, “
A Novel Approach to Modeling of Multi-Axis Plunge Milling and Its Application on the Simulation of Complex Part Plunging
,”
Int. J. Adv. Manuf. Technol.
,
102
(
5–8
), pp.
1141
1151
. 10.1007/s00170-018-2952-3
25.
Liang
,
Y.
,
Ren
,
J.
,
Zhang
,
D.
,
Li
,
X.
, and
Zhou
,
J.
,
2015
, “
Mechanics-based Feedrate Scheduling for Multi-Axis Plunge Milling
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
123
133
. 10.1007/s00170-015-6807-x
26.
Ibaraki
,
S.
,
Yamaji
,
I.
, and
Matsubara
,
A.
,
2010
, “
On the Removal of Critical Cutting Regions by Trochoidal Grooving
,”
Precis. Eng.
,
34
(
3
), pp.
467
473
. 10.1016/j.precisioneng.2010.01.007
27.
ISO 8688-2: 1989, Tool Life Testing in Milling, Part 2: End Milling
.
28.
Han
,
C.
,
Luo
,
M.
,
Zhang
,
D.
, and
Wu
,
B.
,
2018
, “
Iterative Learning Method for Drilling Depth Optimization in Peck Deep-Hole Drilling
,”
ASME J. Manuf. Sci. Eng.
,
140
(
12
), p.
121009
. 10.1115/1.4041420
You do not currently have access to this content.