Abstract

Metal foam sandwich panels have been the subject of many concept studies, due to their exceptional stiffness, light weight, and crash absorption capacity. Yet, the industrial production of the material has been hampered by the fact that it is challenging to bend the material into practical engineering shapes. Only recently, it has been shown that bending of metal foam sandwich panels is possible using lasers. It was also shown that the material can be bent into Euclidean (2D) geometries, and the governing laser-induced bending mechanisms were analyzed. This study was focused on laser forming of metal foam sandwich panels into non-Euclidean (3D) geometries. It was investigated whether the bending mechanisms and process parameters identified for 2D laser forming translate to 3D deformation. Additionally, the impact of the laser scan length was determined by comparing different scan patterns that achieve the same 3D geometries. It was shown that laser forming could induce 3D deformation necessary for both bowl and saddle shapes, the two fundamental non-Euclidean geometries. The amount of laser-induced bending and in-plane strains vary depending on process conditions and the governing bending mechanisms. Lastly, the laser scan length was shown to become more important for metal foam sandwich panels, where the panel thickness tends to be large.

References

References
1.
Ashby
,
M. F.
,
Evans
,
A. G.
,
Fleck
,
N. A.
,
Gibson
,
L. J.
,
Hutchinson
,
J. W.
, and
Wadley
,
H. N. G.
,
2000
,
Metal Foams: A Design Guide
,
Butterworth-Heineman
,
Washington, DC
.
2.
Gibson
,
L. J.
, and
Ashby
,
M. F.
,
1988
,
Cellular Solids: Structure & Properties
,
Pergamon
,
Oxford
.
3.
Banhart
,
J.
, and
Seeliger
,
H. W.
,
2012
, “
Recent Trends in Aluminum Foam Sandwich Technology
,”
Adv. Eng. Mater.
,
14
(
12
), pp.
1082
1087
. 10.1002/adem.201100333
4.
Banhart
,
J.
, and
Seeliger
,
H. W.
,
2008
, “
Aluminium Foam Sandwich Panels: Manufacture, Metallurgy and Applications
,”
Adv. Eng. Mater.
,
10
(
9
), p.
793
. 10.1002/adem.200800091
5.
Bucher
,
T.
,
Cardenas
,
S.
,
Verma
,
R.
,
Li
,
W.
, and
Yao
,
Y. L.
,
2018
, “
Laser Forming of Sandwich Panels With Metal Foam Cores
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111015
. 10.1115/1.4040959
6.
Bucher
,
T.
,
Zhang
,
M.
,
Chen
,
J. J.
,
Verma
,
R.
,
Li
,
W.
, and
Yao
,
Y. L.
,
2019
, “
Laser Forming of Metal Foam Sandwich Panels: Effect of Manufacturing Method
,”
ASME J. Manuf. Sci. Eng.
,
141
(
5
), p.
051006
. 10.1115/1.4043194
7.
Banhart
,
J.
,
2003
, “
Aluminum Foams: On the Road to Real Applications
,”
MRS Bull.
,
28
(
4
), pp.
290
295
. 10.1557/mrs2003.83
8.
Kennedy
,
A.
,
2012
,
Powder Metallurgy, Porous Metals and Metal Foams Made From Powders
,
InTech
,
Rijeka, Croatia
, Chap. 2.
9.
Mata
,
H.
,
Santos
,
A.
,
Parente
,
M.
,
Valente
,
R.
,
Fernandes
,
A.
, and
Jorge
,
N.
,
2013
, “
Study on the Forming of Sandwich Shells With Closed-Cell Foam Cores
,”
Int. J. Mater. Form.
,
7
(
4
), pp.
413
424
. 10.1007/s12289-013-1136-9
10.
Contorno
,
D.
,
Filice
,
L.
,
Fratini
,
L.
, and
Micari
,
F.
,
2006
, “
Forming of Aluminum Foam Sandwich Panels: Numerical Simulations and Experimental Tests
,”
J. Mater. Process. Technol.
,
177
(
1–3
), pp.
364
367
. 10.1016/j.jmatprotec.2006.04.028
11.
Tavakoli
,
A.
,
Naeini
,
H. M.
,
Roohi
,
A. H.
,
Gollo
,
M. H.
, and
Shahabad
,
S. I.
,
2017
, “
Determining Optimized Radial Scan Path in 3D Laser Forming of SteelAISI 304 Plates to Produce Bowl Shapes
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9–12
), pp.
3457
3465
. 10.1007/s00170-017-9985-x
12.
Tavakoli
,
A.
,
Naeini
,
H. M.
,
Roohi
,
A. H.
,
Gollo
,
M. H.
, and
Shahabad
,
S. I.
,
2017
, “
Optimization of Circular Scan Path to Produce Bowl Shapes in 3D Laser Forming Process
,”
J. Laser Ap.
,
29
(
4
), p.
042001
. 10.2351/1.5000128
13.
Edwardson
,
S. P.
,
Watkins
,
K. G.
,
Dearden
,
G.
, and
Magee
,
J.
,
2001
, “
3D Laser Forming of Saddle Shapes
,”
Proceedings of the LANE ‘01
,
Erlangen, Germany
,
Aug. 28–31
, pp.
559
568
.
14.
Edwardson
,
S. P.
,
Moore
,
A. J.
,
Abed
,
E.
,
McBride
,
R.
,
French
,
P.
,
Hand
,
D. P.
,
Dearden
,
G.
,
Jones
,
J. D. C.
, and
Watkins
,
K. G.
,
2004
, “
Iterative 3D Laser Forming of Continuous Surfaces
,”
Proceedings of the ICALEO ‘04
,
San Francisco, CA
,
Oct. 4–7
, pp.
1
10
.
15.
Cheng
,
J.
, and
Yao
,
Y. L.
, “
Process Design of Laser Forming for Three Dimensional Thin Plates
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
217
225
. 10.1115/1.1751187
16.
Liu
,
C.
, and
Yao
,
Y. L.
,
2005
, “
FEM-Based Process Design for Laser Forming of Doubly Curved Shapes
,”
J. Manuf. Proc.
,
7
(
2
), pp.
109
121
. 10.1016/S1526-6125(05)70088-8
17.
Bucher
,
T.
,
Young
,
A.
,
Zhang
,
M.
,
Chen
,
C. J.
, and
Yao
,
Y. L.
,
2018
, “
Thermally Induced Mechanical Response of Metal Foam During Laser Forming
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041004
. 10.1115/1.4038995
18.
Vollertsen
,
F.
,
1993
, “
The Mechanisms of Laser Forming
,”
CIRP Ann.
,
42
(
1
), pp.
301
304
. 10.1016/S0007-8506(07)62448-2
19.
Hanssen
,
A. G.
,
Girard
,
Y.
,
Olovsson
,
L.
,
Berstad
,
L.
, and
Langseth
,
M.
,
2006
, “
A Numerical Model for Bird Strike of Aluminium Foam-Based Sandwich Panels
,”
Int. J. Impact Eng.
,
32
(
7
), pp.
1127
1144
. 10.1016/j.ijimpeng.2004.09.004
20.
Spittel
,
T.
,
Spittel
,
M.
, and
Warlimont
,
H.
,
2011
,
Non-Ferrous Alloys—Light Metals Vol.VIII/2C2, AlSi8
,
Springer
,
Berlin, Germany
.
21.
Deshpande
,
V.
, and
Fleck
,
N.
,
2000
, “
Isotropic Constitutive Models for Metallic Foams
,”
J. Mech. Phys. Solids
,
48
(
6–7
), pp.
1253
1283
. 10.1016/S0022-5096(99)00082-4
22.
Bucher
,
T.
,
Bolger
,
C.
,
Zhang
,
M.
,
Chen
,
C.
, and
Yao
,
Y. L.
,
2016
, “
Effect of Geometrical Modeling on Prediction of Laser-Induced Heat Transfer in Metal Foam
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121008
. 10.1115/1.4033927
23.
Turon
,
A.
,
Davila
,
C. G.
,
Camanho
,
P. P.
, and
Costa
,
J.
,
2007
, “
An Engineering Solution for Mesh Size Effects in the Simulation of Delamination Using Cohesive Zone Models
,”
Eng. Fract. Mech.
,
74
(
10
), pp.
1665
1682
. 10.1016/j.engfracmech.2006.08.025
24.
Skidmore
,
M.
, and
Johnson
,
R.
,
1989
, “
Thermal Contact Conductance of Various Metals at Elevated Temperatures
,”
Proceedings of 24th Thermophysical Conference
,
Raleigh, NC
,
June 12–14
, pp.
1
8
.
25.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
. 10.1109/MCSE.2014.80
You do not currently have access to this content.