Abstract

Non-grain-oriented electrical steel lamination is a critical component for the magnetic core. Punching such steel sheet with a large shear region, a low burr and small rollover is required to ensure accuracy. Densely packed grain deformation and plastic strain near cut surface are generally accompanied which detrimentally influence magnetic properties. In this study, micro-clearance (CL: 1 and 5 µm) punching of electrical silicon steel was conducted to investigate the influences of punching speed, micro-clearance, and counterforce on dimensional accuracy and microstructural changes. Electron backscatter diffraction analysis was performed to investigate the microstructural characteristics and detailed texture of specimens produced by shear speeds of 100, 260, and 600 mm/s with and without applied counterforce. Rollover height was found to be significantly reduced at a shear speed of 260 mm/s with applied counterforce under 1 µm clearance punching. The applications of counterforce and higher speed both significantly increased grain deformation, although the dimensional accuracy was improved. Grain conditions and the quality of cut surface were compared for different punching conditions to advance the understanding on the correlations between dimensional accuracy, grain deformation, and plastic strain.

References

References
1.
Kurosaki
,
Y.
,
Mogi
,
H.
,
Fujii
,
H.
,
Kubota
,
T.
, and
Shiozaki
,
M.
,
2008
, “
Importance of Punching and Workability in Non-Oriented Electrical Steel Sheets
,”
J. Magn. Magn. Mater.
,
320
(
20
), pp.
2474
2480
. 10.1016/j.jmmm.2008.04.073
2.
Saleem
,
A.
,
Goldbaum
,
D.
,
Brodusch
,
N.
,
Gauvin
,
R.
, and
Chromik
,
R. R.
,
2018
, “
Microstructure and Mechanical Property Connections for A Punched Non-Oriented Electrical Steel Lamination
,”
Mater. Sci. Eng. A
,
725
, pp.
456
465
. 10.1016/j.msea.2018.04.054
3.
Leuning
,
N.
,
Steentjes
,
S.
,
Schulte
,
M.
,
Bleck
,
W.
, and
Hameyer
,
K.
,
2016
, “
Effect of Elastic and Plastic Tensile Mechanical Loading on the Magnetic Properties of NGO Electrical Steel
,”
J. Magn. Magn. Mater.
,
417
, pp.
42
48
. 10.1016/j.jmmm.2016.05.049
4.
Salinas
,
J. B.
, and
Salinas
,
A. R.
,
2016
, “
Evaluation of Microstructure and Magnetic Properties in Nonoriented Electrical Steel Strained by Tension
,”
J. Iron Steel Res. Int.
,
23
(
2
), pp.
166
170
. 10.1016/S1006-706X(16)30029-2
5.
Naumoski
,
H.
,
Riedmuller
,
B.
,
Minkow
,
A.
, and
Herr
,
U.
,
2015
, “
Investigation of the Influence of Different Cutting Procedures on the Global and Local Magnetic Properties of Non-Oriented Electrical Steel
,”
J. Magn. Magn. Mater.
,
392
, pp.
126
133
. 10.1016/j.jmmm.2015.05.031
6.
Nasheralahkami
,
S.
,
Zhou
,
W.
, and
Golovashchenko
,
S.
,
2019
, “
Study of Sheared Edge Formability of Ultra-High Strength DP980 Sheet Metal Blanks
,”
ASME J. Manuf. Sci. Eng.
,
141
(
9
), pp.
091009
. 10.1115/1.4044098
7.
Liu
,
Y.
,
Tang
,
B.
,
Hua
,
L.
, and
Mao
,
H.
,
2018
, “
Investigation of a Novel Modified Die Design for Fineblanking Process to Reduce the Die-Roll Size
,”
J. Mater. Process. Technol.
,
260
, pp.
30
37
. 10.1016/j.jmatprotec.2018.04.029
8.
Weiss
,
H. A.
,
Leuning
,
N.
,
Steentjes
,
S.
,
Hameyer
,
K.
,
Andorfer
,
T.
,
Jenner
,
S.
, and
Volk
,
W.
,
2017
, “
Influence of Shear Cutting Parameters on the Electromagnetic Properties of Non-Oriented Electrical Steel Sheets
,”
J. Magn. Magn. Mater.
,
421
, pp.
250
259
. 10.1016/j.jmmm.2016.08.002
9.
Thipprakmas
,
S.
,
Jin
,
M.
, and
Murakawa
,
M.
,
2007
, “
An Investigation of Material Flow Analysis in Fineblanking Process
,”
J. Mater. Process. Technol.
,
192–193
(
1–3
), pp.
237
242
. 10.1016/j.jmatprotec.2007.04.065
10.
Levy
,
B. S.
, and
Van Tyne
,
C. J.
,
2012
, “
Review of the Shearing Process for Sheet Steels and Its Effect on Sheared-Edge Stretching
,”
J. Mater. Eng. Perform.
,
21
(
7
), pp.
1205
1213
. 10.1007/s11665-011-9997-x
11.
Marouani
,
H.
,
Ben Ismail
,
A.
,
Hug
,
E.
, and
Rachik
,
M.
,
2009
, “
Numerical Investigations on Sheet Metal Blanking With High Speed Deformation
,”
Mater. Des.
,
30
(
9
), pp.
3566
3571
. 10.1016/j.matdes.2009.02.028
12.
Ghadbeigi
,
H.
,
Al-Rubaye
,
A.
,
Robinson
,
F. C. J.
,
Hawezy
,
D.
,
Birosca
,
S.
, and
Atallah
,
K.
,
2020
, “
Blanking Induced Damage in Thin 3.2% Silicon Steel Sheets
,”
Prod. Eng.
,
14
(
1
), pp.
53
64
. 10.1007/s11740-019-00931-1
13.
Subramonian
,
S.
,
Altan
,
T.
,
Ciocirlan
,
B.
, and
Campbell
,
C.
,
2013
, “
Optimum Selection of Variable Punch-Die Clearance to Improve Tool Life in Blanking Nonsymmetric Shapes
,”
Int. J. Mach. Tools Manuf.
,
75
, pp.
63
71
. 10.1016/j.ijmachtools.2013.09.004
14.
Faisal
,
N. H.
,
Prathuru
,
A. K.
,
Goel
,
S.
,
Ahmed
,
R.
,
Droubi
,
M. G.
,
Beake
,
B. D.
, and
Fu
,
Y. Q.
,
2017
, “
Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film
,”
Shape Mem. Superelasticity
,
3
(
2
), pp.
149
167
. 10.1007/s40830-017-0099-y
15.
Klocke
,
F.
,
Sweeney
,
K.
, and
Raedt
,
H. W.
,
2001
, “
Improved Tool Design for Fine Blanking Through the Application of Numerical Modeling Techniques
,”
J. Mater. Process. Technol.
,
115
(
1
), pp.
70
75
. 10.1016/S0924-0136(01)00771-3
16.
Dorner
,
D.
,
Zaefferer
,
S.
, and
Raabe
,
D.
,
2007
, “
Retention of the Goss Orientation Between Microbands During Cold Rolling of an Fe3%Si Single Crystal
,”
Acta Mater.
,
55
(
7
), pp.
2519
2530
. 10.1016/j.actamat.2006.11.048
17.
Tabor
,
D.
,
1970
, “
The Hardness of Solids
,”
Rev. Phys. Technol.
,
1
(
3
), pp.
145
179
. 10.1088/0034-6683/1/3/I01
18.
Milman
,
Y. V.
,
Galanov
,
B. A.
, and
Chugunova
,
S. I.
,
1993
, “
Plasticity Characteristic Obtained Through Hardness Measurement
,”
Acta Metall. Mater.
,
41
(
9
), pp.
2523
2532
. 10.1016/0956-7151(93)90122-9
You do not currently have access to this content.