Abstract

Remanufacturing is a crucial component for our societies to move toward a circular economy. Compared with new manufacturing, the distinctive nature of remanufacturing is found to have high variability, high uncertainty and, thereby, complexity. Therefore, remanufacturers need to be able to adapt to the complexity and to flexibly adjust their processes. Especially, the ability to remanufacturing process planning and control is important. However, few practical methods supporting that are available so far. Therefore, this paper aims to propose a method for designing teams and processes in remanufacturing based on the concept of loosely coupled systems. In the proposed method, design structure matrix (DSM) is applied to identify loosely coupled sub-systems that enable to localize impacts of changes within themselves. These sub-systems are also regarded as cross-functional teams that reduce coordination efforts among line departments and, therefore, increase the adaptability against uncertainties. As a preliminary validation, the proposed method was applied to a real case of remanufacturing, and then found to be effective for creating teams and processes for remanufacturing process planning and control depending on given uncertainties.

References

1.
Matsumoto
,
M.
,
Yang
,
S.
,
Martinsen
,
K.
, and
Kainuma
,
Y.
,
2016
, “
Trends and Research Challenges in Remanufacturing
,”
Int. J. Precis. Eng. Manuf.—Green Technol.
,
3
(
1
), pp.
129
142
.
2.
Tolio
,
T.
,
Bernard
,
A.
,
Colledani
,
M.
,
Kara
,
S.
,
Seliger
,
G.
,
Duflou
,
J.
,
Battaia
,
O.
, and
Takata
,
S.
,
2017
, “
Design, Management and Control of Demanufacturing and Remanufacturing Systems
,”
CIRP Ann.
,
66
(
2
), pp.
585
609
.
3.
Webster
,
K.
,
2015
,
The Circular Economy: A Wealth of Flows
,
Ellen MacArthur Foundation
,
Isle of Wight
.
4.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.
5.
Jayaraman
,
V.
, and
Luo
,
Y.
,
2007
, “
Creating Competitive Advantages Through New Value Creation: A Reverse Logistics Perspective
,”
Acad. Manag. Perspect.
,
21
(
2
), pp.
56
73
.
6.
Parker
,
D.
,
Riley
,
K.
,
Robinson
,
S.
,
Symington
,
H.
,
Tewson
,
J.
,
Jansson
,
K.
,
Ramkumar
,
S.
, and
Peck
,
D.
,
2015
,
“ERN—European Remanufacturing Network, Remanufacturing Market Study
,” European Remanufacturing Council, Delft, The Netherlands, http://www.remanufacturing.eu/assets/pdfs/remanufacturing-market-study.pdf, Accessed October 15, 2018,
7.
Sakao
,
T.
, and
Sundin
,
E.
,
2019
, “
How to Improve Remanufacturing ?—A Systematic Analysis of Practices and Theories
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021004
.
8.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manag.
,
91
(
3
), pp.
563
591
.
9.
Wei
,
S.
,
Cheng
,
D.
,
Sundin
,
E.
, and
Tang
,
O.
,
2015
, “
Motives and Barriers of the Remanufacturing Industry in China
,”
J. Cleaner Prod.
,
94
, pp.
340
351
.
10.
Thome
,
J. M.
, and
Whitman
,
L. E.
,
2014
, “
An Enterprise Decision Model for a Large Scale Assembly Operation
,”
IFAC Proc. Volumes
,
19
(
1999
), pp.
4286
4291
.
11.
Jiang
,
Z.
,
Wang
,
H.
,
Dulebenets
,
M. A.
, and
Pasha
,
J.
,
2019
, “
Assembly System Configuration Design for Reconfigurability Under Uncertain Production Evolution
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
071001
.
12.
Glassman
,
R. B.
,
1973
, “
Persistence and Loose Coupling in Living Systems
,”
Behav. Sci.
,
18
(
2
), pp.
83
98
.
13.
Orton
,
J. D.
, and
Weick
,
K. E.
,
1990
, “
Loosely Coupled Systems: A Reconceptualization
,”
Acad. Manag. Rev.
,
15
(
2
), pp.
203
223
.
14.
Eppinger
,
S. D.
, and
Browning
,
T. R.
,
2012
,
Design Structure Matrix Methods and Applications Engineering Systems
,
MIT Press
,
Cambridge
.
15.
Morse
,
E.
,
Dantan
,
J. Y.
,
Anwer
,
N.
,
Söderberg
,
R.
,
Moroni
,
G.
,
Qureshi
,
A.
,
Jiang
,
X.
, and
Mathieu
,
L.
,
2018
, “
Tolerancing: Managing Uncertainty From Conceptual Design to Final Product
,”
CIRP Ann.
,
67
(
2
), pp.
695
717
.
16.
Guide
V. D. R.
, Jr
,
2000
, “
Production Planning and Control for Remanufacturing: Industry Practice and Research Needs
,”
J. Oper. Manag.
,
18
(
4
), pp.
467
483
.
17.
Kelle
,
P.
, and
Silver
,
E. A.
,
1989
, “
Forecasting the Returns of Reusable Containers
,”
J. Oper. Manag.
,
8
(
1
), pp.
17
35
.
18.
Kroon
,
L.
, and
Vrijens
,
G.
,
1995
, “
Returnable Containers: An Example of Reverse Logistics
,”
Int. J. Phys. Distrib. Logist. Manag.
,
25
(
2
), pp.
56
68
.
19.
Gu
,
Q.
, and
Tagaras
,
G.
,
2014
, “
Optimal Collection and Remanufacturing Decisions in Reverse Supply Chains With Collectors Imperfect Sorting
,”
Int. J. Prod. Res.
,
52
(
17
), pp.
5155
5170
.
20.
Guide
V. D. R.
, Jr
,
1996
, “
Scheduling Using Drum-Buffer-Rope in a Remanufacturing Environment
,”
Int. J. Prod. Res.
,
34
(
4
), pp.
1081
1091
.
21.
Wang
,
Y.
,
Mendis
,
G. P.
,
Peng
,
S.
, and
Sutherland
,
J. W.
,
2019
, “
Component-Oriented Reassembly in Remanufacturing Systems: Managing Uncertainty and Satisfying Customer Needs
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021005
.
22.
Van der Laan
,
E.
, and
Salomon
,
M.
,
1997
, “
Production Planning and Inventory Control With Remanufacturing and Disposal
,”
Eur. J. Oper. Res.
,
102
(
2
), pp.
264
278
.
23.
Mahadevan
,
B.
,
Pyke
,
D. F.
, and
Fleischmann
,
M.
,
2003
, “
Periodic Review, Push Inventory Policies for Remanufacturing
,”
Eur. J. Oper. Res.
,
151
(
3
), pp.
536
551
.
24.
Zhou
,
S. X.
, and
Yu
,
Y.
,
2011
, “
Optimal Product Acquisition, Pricing, and Inventory Management for Systems With Remanufacturing
,”
Oper. Res.
,
59
(
2
), pp.
514
521
.
25.
Wang
,
X.
,
Luo
,
W.
,
Zhang
,
H.
,
Dan
,
B.
, and
Li
,
F.
,
2016
, “
Energy Consumption Model and Its Simulation for Manufacturing and Remanufacturing Systems
,”
Int. J. Adv. Manuf. Technol.
,
87
(
5–8
), pp.
1557
1569
.
26.
Kekre
,
S.
,
Rao
,
U. S.
,
Swaminathan
,
J. M.
, and
Zhang
,
J.
,
2003
, “
Reconfiguring a Remanufacturing Line at Visteon, Mexico
,”
Interfaces
,
33
(
6
), pp.
30
43
.
27.
Bulmuş
,
S. C.
,
Zhu
,
S. X.
, and
Teunter
,
R. H.
,
2014
, “
Optimal Core Acquisition and Pricing Strategies for Hybrid Manufacturing and Remanufacturing Systems
,”
Int. J. Prod. Res.
,
52
(
22
), pp.
6627
6641
.
28.
Kiureghian
,
A. D.
, and
Ditlevsen
,
O.
,
2009
, “
Aleatory or Epistemic? Does It Matter?
,”
Struct. Saf.
,
31
(
2
), pp.
105
112
.
29.
Guo
,
J.
, and
Du
,
X.
,
2007
, “
Sensitivity Analysis With Mixture of Epistemic and Aleatory Uncertainties
,”
AIAA J.
,
45
(
9
), pp.
2337
2349
.
30.
Ulrich
,
K.
,
1995
, “
The Role of Product Architecture in the Manufacturing Firm
,”
Res. Policy
,
24
(
3
), pp.
419
440
.
31.
Sanchez
,
R.
, and
Mahoney
,
J. T.
,
1996
, “
Modularity, Flexibility, and Knowledge Management in Product and Organization Design
,”
Strateg. Manag. J.
,
17
(
S2
), pp.
63
76
.
32.
Browning
,
T. R.
,
2001
, “
Applying the Design Structure Matrix to System Decomposition and Integration Problems: A Review and New Directions
,”
IEEE Trans. Eng. Manag.
,
48
(
3
), pp.
292
306
.
33.
Yassine
,
A.
, and
Braha
,
D.
,
2003
, “
Complex Concurrent Engineering and the Design Structure Matrix Method
,”
Concurr. Eng.
,
11
(
3
), pp.
165
176
.
34.
Tang
,
D.
,
Zhu
,
R.
,
Tang
,
J.
,
Xu
,
R.
, and
He
,
R.
,
2010
, “
Product Design Knowledge Management Based on Design Structure Matrix
,”
Adv. Eng. Inform.
,
24
(
2
), pp.
159
166
.
35.
Qiao
,
L.
,
Efatmaneshnik
,
M.
,
Ryan
,
M.
, and
Shoval
,
S.
,
2017
, “
Product Modular Analysis With Design Structure Matrix Using a Hybrid Approach Based on MDS and Clustering
,”
J. Eng. Des.
,
28
(
6
), pp.
433
456
.
36.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2015
, “
Determining Granularity of Changeable Manufacturing Systems Using Changeable Design Structure Matrix and Cladistics
,”
ASME J. Mech. Des.
,
137
(
4
), p.
041702
.
37.
Lee
,
J.
,
Park
,
M.
,
Lee
,
H.-S. S.
,
Kim
,
T. Y.
,
Kim
,
S.
, and
Hyun
,
H.
,
2017
, “
Workflow Dependency Approach for Modular Building Construction Manufacturing Process Using Dependency Structure Matrix (DSM)
,”
KSCE J. Civ. Eng.
,
21
(
5
), pp.
1525
1535
.
38.
Sakao
,
T.
,
Song
,
W.
, and
Matschewsky
,
J.
,
2017
, “
Creating Service Modules for Customising Product/Service Systems by Extending DSM
,”
CIRP Ann.
,
66
(
1
), pp.
21
24
.
39.
Browning
,
T. R.
,
2016
, “
Design Structure Matrix Extensions and Innovations: A Survey and New Opportunities
,”
IEEE Trans. Eng. Manag.
,
63
(
1
), pp.
27
52
.
40.
Cai
,
L. G.
,
Li
,
K.
,
Cheng
,
Q.
,
Qi
,
Z.
, and
Gu
,
P. H.
,
2014
, “
Adaptable Design Methodology of Heavy Duty Machine Tool for Green Remanufacturing
,”
Appl. Mech. Mater.
,
496–500
, pp.
2672
2678
.
41.
Kondoh
,
S.
, and
Salmi
,
T.
,
2011
, “
Strategic Decision Making Method for Sharing Resources Among Multiple Manufacturing/Remanufacturing Systems
,”
J. Remanufacturing
,
1
(
1
), pp.
1
8
.
42.
Shu
,
L.
, and
Flowers
,
W.
,
1993
, “
A Structured Approach to Design for Remanufacture
,”
The Symposium on Intelligent Concurrent Design: Fundamentals, Methodology, Modeling and Practice
,
New Orleans, LA
,
Nov. 28–Dec. 3
, pp.
13
19
.
43.
Pandey
,
V.
,
Thurston
,
D.
, and
Jolly
,
M.
,
2006
, “
Remanufacture Dependency Matrix and Market Diffusion of Multi-Level Products
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Philadelphia, PA
,
Sept. 10–13
, pp.
801
809
.
44.
Inoue
,
M.
,
Yamada
,
S.
,
Miyajima
,
S.
,
Ishii
,
K.
,
Hasebe
,
R.
,
Aoyama
,
K.
,
Yamada
,
T.
, and
Bracke
,
S.
,
2020
, “
A Modular Design Strategy Considering Sustainability and Supplier Selection
,”
J. Adv. Mech. Des. Syst. Manuf.
,
14
(
2
), pp.
1
10
.
45.
Storto
,
C. L.
,
D’Avino
,
G.
,
Dondo
,
P.
, and
Zezza
,
V.
,
2008
, “
Simulating Information Ambiguity During New Product Development: A Forecasting Model Using System Dynamics
,”
Int. J. Model. Identif. Control.
,
3
(
1
), pp.
97
110
.
46.
Shi
,
Q.
, and
Blomquist
,
T.
,
2012
, “
A New Approach for Project Scheduling Using Fuzzy Dependency Structure Matrix
,”
Int. J. Proj. Manag.
,
30
(
4
), pp.
503
510
.
47.
Saridakis
,
K. M.
, and
Dentsoras
,
A. J.
,
2005
, “
A Fuzzy Rule-Based Approach for the Collaborative Formation of Design Structure Matrices, Applications and Innovations in Intelligent Systems XIII
,”
XIII-Proceedings of 25th SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence
,
Cambridge, UK
,
Dec. 12–14
, pp.
81
94
.
48.
Priyono
,
A.
,
2016
, “
Cross-Functional Collaboration in Sustainability Contexts: Exploratory Studies in Remanufacturing Companies
,”
Procedia Econ. Finance
,
35
(
2015
), pp.
553
562
.
49.
Guide
,
V. D. R.
, and
Van Wassenhove
,
L. N.
,
2009
, “
The Evolution of Closed-Loop Supply Chain Research
,”
Oper. Res.
,
57
(
1
), pp.
10
18
.
50.
Guide
,
V. D. R.
, and
Srivastava
,
R.
,
1998
, “
Inventory Buffers in Recoverable Manufacturing
,”
J. Oper. Manag.
,
16
(
5
), pp.
551
568
.
51.
van Eijnatten
,
F. M.
,
Putnik
,
G. D.
, and
Sluga
,
A.
,
2007
, “
Chaordic Systems Thinking for Novelty in Contemporary Manufacturing
,”
CIRP Ann.
,
56
(
1
), pp.
447
450
.
52.
Vrabic
,
R.
, and
Butala
,
P.
,
2012
, “
Assessing Operational Complexity of Manufacturing Systems Based on Statistical Complexity
,”
Int. J. Prod. Res.
,
50
(
14
), pp.
3673
3685
.
53.
Suh
,
N. P.
,
1995
, “
Axiomatic Design of Mechanical Systems
,”
ASME J. Vib. Acoust.
,
117
(B), pp.
2
10
.
54.
Clarkson
,
P. J.
,
Simons
,
C.
, and
Eckert
,
C.
,
2004
, “
Predicting Change Propagation in Complex Design
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
788
797
.
55.
Akao
,
Y.
,
1990
,
Quality Function Deployment: Integrating Customer Requirements Into Product Design
,
Productivity Press
,
Cambridge, MA
.
56.
Franceschini
,
F.
, and
Galetto
,
M.
,
2001
, “
A New Approach for Evaluation of Risk Priorities of Failure Modes in FMEA
,”
Int. J. Prod. Res.
,
39
(
13
), pp.
2991
3002
.
57.
Gutierrez-Fernandez
,
C. I.
,
Gutierrez
,
C. I.
, and
Gutierrez-Fernandez
,
C. I.
,
1998
,
Integration Analysis of Product Architecture to Support Effective Team Co-Location
,
Massachussets Institute of Technology
,
Cambridge, MA
.
58.
Kimita
,
K.
,
Hosono
,
S.
, and
Shimomura
,
Y.
,
2011
, “
A Service Structural Analysis Based on Functional Dependency
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Washington, DC
,
Aug. 28–31
, pp.
617
626
.
59.
Holland
,
J. H.
,
1975
,
Adaptation in Natural and Artificial Systems
,
University of Michigan Press
,
Ann Arbor
.
60.
Mabee
,
D. G.
,
Bommer
,
M.
,
Keat
,
W. D.
,
David
,
G.
, and
William
,
D.
,
1999
, “
Design Charts for Remanufacturing Assessment
,”
J. Manuf. Syst.
,
18
(
5
), p.
358
.
61.
Fontela
,
E.
, and
Gabus
,
A.
,
1976
,
The DEMATEL Observer, DEMATEL 1976 Report
,
Battelle Geneva Research Center
,
Geneva
.
62.
Gabus
,
A.
, and
Fontela
,
E.
,
1972
,
World Problems, an Invitation to Further Thought Within the Framework of DEMATEL
,
Battelle Geneva Research Center
,
Geneva, Switzerland
,
1
8
.
63.
Jing
,
L.
,
Li
,
Z.
,
Peng
,
X.
,
Li
,
J.
, and
Jiang
,
S.
,
2019
, “
A Relative Equilibrium Decision Approach for Concept Design Through Fuzzy Cooperative Game Theory
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), pp.
1
12
.
64.
Ilgin
,
M. A.
,
2019
, “
A DEMATEL-Based Disassembly Line Balancing Heuristic
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021002
.
65.
Lange
,
K.
,
Leggett
,
S.
, and
Baker
,
B.
,
2001
,
Potential Failure Mode and Effects Analysis (FMEA) Reference Manual
,
AIAG
,
Southfield, MI
.
You do not currently have access to this content.