Abstract

The traditional material constitutive model can effectively simulate the mechanical properties during the cutting process. However, the scale characteristics contained in materials are not considered in the traditional cutting model, and the inherent scale effect of materials is also ignored. Therefore, the traditional cutting constitutive model cannot effectively reflect the size effect in the cutting process, and then cannot obtain the accurate stress, strain, and temperature. In this present paper, a material constitutive model which can reflect the scale effect is established based on the strain gradient plasticity theory. Through the established model and secondary development of abaqus, the two-dimensional dynamic finite element simulation model of cutting Inconel 718 is established. By comparing the cutting experiment results with the simulation results, the established simulation model can more accurately reflect the effects of temperature, strain gradient effect, equivalent stress, and its scale effect on cutting deformation during the machining process.

References

1.
Sundararaman
,
M.
, and
Banerjee
,
P. M.
,
1992
, “
Some Aspects of the Precipitation of Metastable Intermetallic Phases in INCONEL 718
,”
Metall. Mater. Trans. A.
,
23
(
7
), pp.
2015
2028
.
2.
Fleck
,
N. A.
,
Muller
,
G. M.
,
Ashby
,
M. F.
, and
Hutchinson
,
J. W.
,
1994
, “
Strain Gradient Plasticity: Theory and Experiment
,”
Acta Metall. Mater.
,
42
(
2
), pp.
475
487
.
3.
Stolken
,
J. S.
, and
Evans
,
A. G.
,
1998
, “
A Micro Bend Test Method for Measuring the Plasticity Length Scale
,”
Acta Mater.
,
46
(
14
), pp.
5109
5115
.
4.
Fleck
,
N. A.
, and
Hutchinson
,
J. W.
,
1993
, “
A Phenomenological Theory for Strain Gradient Effects in Platicity
,”
J. Mech. Phys. Solids
,
41
(
12
), pp.
1825
1857
.
5.
Gao
,
H.
,
Huang
,
Y.
,
Nix
,
W. D.
, and
Hutchinson
,
J. W.
,
1999
, “
Mechanism-Based Strain Gradient Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
47
(
6
), pp.
1239
1263
.
6.
Huang
,
Y.
,
Gao
,
H.
,
Nix
,
W.
, and
Hutchinson
,
J. W.
,
2000
, “
Mechanism-Based Strain Gradient Plasticity—II. Analysis
,”
J. Mech. Phys. Solids
,
48
(
1
), pp.
99
128
.
7.
Aifantis
,
E.
,
1999
, “
Strain Gradient Interpretation of Size Effects
,”
Int. J. Fract.
,
95
(
1–4
), pp.
299
314
.
8.
Sahoo
,
P.
,
Patra
,
K.
,
Singh
,
V. K.
,
Mittal
,
R. K.
, and
Singh
,
R. K.
,
2020
, “
Modeling Dynamic Stability and Cutting Forces in Micro Milling of Ti6Al4V Using Intermittent Oblique Cutting Finite Element Method Simulation-Based Force Coefficients
,”
ASME J. Manuf. Sci. Eng.
,
142
(
9
), p.
091005
.
9.
Shi
,
B.
,
Elsayed
,
A.
,
Damir
,
A.
,
Attia
,
H.
, and
M'Saoubi
,
R.
,
2019
, “
A Hybrid Modeling Approach for Characterization and Simulation of Cryogenic Machining of Ti–6Al–4V Alloy
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021021
.
10.
Liu
,
G. L.
,
Shah
,
S.
, and
Tuğrul
,
Ö.
,
2019
, “
Material Ductile Failure-Based Finite Element Simulations of Chip Serration in Orthogonal Cutting of Titanium Alloy Ti-6Al-4V
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
041017
.
11.
Russo
,
R.
,
Girot Mata
,
F. A.
,
Forest
,
S.
, and
Jacquin
,
D.
,
2020
, “
A Review on Strain Gradient Plasticity Approaches in Simulation of Manufacturing Processes
,”
J. Manuf. Mater. Process.
,
4
(
3
), p.
87
.
12.
Zhu
,
H.
, and
Zbib
,
H.
,
1995
, “
On the Role of Strain Gradients in Adiabatic Shear Banding
,”
Acta Mech.
,
111
(
1
), pp.
111
124
.
13.
Joshi
,
S. S.
, and
Melkote
,
S. N.
,
2004
, “
An Explanation for the Size-Effect in Machining Using Strain Gradient Plasticity
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
679
684
.
14.
Lai
,
X.
,
Li
,
H.
,
Li
,
C.
,
Lin
,
Z.
, and
Ni
,
J.
,
2008
, “
Modelling and Analysis of Micro Cale Milling Considering Size Effect, Micro Cutter Edge Radius and Minimum Chip Thickness
,”
Int. J. Mach. Tools Manuf.
,
48
(
1
), pp.
1
14
.
15.
Jin
,
X. L.
, and
Altintas
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
221
(
3
), pp.
339
355
.
16.
Ding
,
H. T.
,
Shen
,
N. G.
, and
Shin
,
Y. C.
,
2011
, “
Experimental Evaluation and Modeling Analysis of Micro-Milling of Hardened H13 Tool Steels
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041007
.
17.
Lu
,
D.
,
Cai
,
L. G.
, and
Yang
,
M. M.
,
2013
, “
Simulation Research of Micro-Cutting Process Based on MSG Theory
,”
J. Syst. Simul.
,
25
(
12
), pp.
2941
2945
. (In Chinese)
18.
Sabet
,
S. A.
, and
de Borst
,
R.
,
2019
, “
Mesh Bias and Shear Band Inclination in Standard and Non-Standard Continua
,”
Arch. Appl. Mech.
,
89
(
3
), pp.
2577
2590
.
19.
Wang
,
X.
,
Huang
,
C.
,
Zou
,
B.
,
Liu
,
H.
,
Zhu
,
H.
, and
Wang
,
J.
,
2013
, “
Dynamic Behavior and a Modified Johnson–Cook Constitutive Model of Inconel 718 at High Strain Rate and Elevated Temperature
,”
Mater. Sci. Eng. A
,
580
(
9
), pp.
385
390
.
20.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the 7th International Symposium on Ballistics
,
The Hague, The Netherlands
, pp.
541
547
.
21.
Wu
,
J. H.
, and
Liu
,
Z. Q.
,
2009
, “
Modeling the Minimum Chip Thickness in Orthogonal Micro-Cutting Based on Plastic Strain Gradient
,”
Adv. Mater. Res.
,
69–70
(
5
), pp.
203
208
.
22.
Erice
,
B.
, and
Gálvez
,
F.
,
2014
, “
A Coupled Elastoplastic-Damage Constitutive Model With Lode Angle Dependent Failure Criterion
,”
Int. J. Solids Struct.
,
51
(
1
), pp.
93
110
.
23.
Zorev
,
N. N.
,
1963
, “
Inter-Relationship Between Shear Processes Occurring Along Tool Face and Shear Plane in Metal Cutting
,”
Proceedings of the International Research in Production Engineering Conference ASME
,
New York
, pp.
42
49
.
24.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.
,
55
(
2
), pp.
745
768
.
25.
Wang
,
Y.
,
Shao
,
W. Z.
,
Zhen
,
L.
,
Yang
,
C.
, and
Zhang
,
X. M.
,
2009
, “
Tensile Deformation Behavior of Superalloy 718 at Elevated Temperatures
,”
J. Alloys Compd.
,
471
(
1
), pp.
331
335
.
26.
Shimada
,
S.
,
Ikawa
,
N.
,
Tanaka
,
H.
, and
Uchikoshi
,
J.
,
1994
, “
Structure of Micro Machined Surface Simulated by Molecular Dynamics Analysis
,”
Ann. CIRP
,
43
(
1
), pp.
51
54
.
27.
Han
,
C. S.
,
Gao
,
H.
,
Huang
,
Y.
, and
Nix
,
W. D.
,
2005
, “
Mechanism-Based Strain Gradient Crystal Plasticity—I. Theory
,”
J. Mech. Phys. Solids
,
53
(
5
), pp.
1188
1203
.
You do not currently have access to this content.