Abstract

Electrical discharge machined surfaces inherently possess recast layer on the surface with heat affected zone (HAZ) beneath it and these have a detrimental effect on the mechanical properties viz., hardness, elastic modulus, etc. It is very difficult to experimentally characterize each machined surface. Therefore, an attempt is made in this study to numerically calculate the mechanical properties of the parent material, HAZ and the recast layer on a hemispherical protruded micro feature fabricated by reverse micro EDM (RMEDM). In the first stage, nano indentation was performed to experimentally determine the load–displacement plots, elastic modulus and hardness of the parent material, HAZ, and the recast layer. In the second stage, finite element analysis (FEA) simulation was carried out to mimic the nano indentation process and determine the load–displacement plots for all the three cases viz., parent material, recast layer, and HAZ. Results demonstrated that the load–displacement plots obtained from numerical model in each case was in good agreement with that of the experimental curves. Based on simulated load–displacement plots, hardness was also calculated for parent material, HAZ, and the recast layer. A maximum of 11% error was observed between simulated values of hardness and experimentally determined values. This model can be utilized to predict the mechanical properties of surfaces fabricated by micro scale EDM process and this will help in reducing the number of experiments thereby saving time and cost.

References

1.
Pharr
,
G. M.
,
1998
, “
Measurement of Mechanical Properties by Ultra-Low Load Indentation
,”
Mater. Sci. Eng. A
,
253
(
1–2
), pp.
151
159
.
2.
Karimzadeh
,
A.
,
Ayatollahi
,
M. R.
, and
Alizadeh
,
M.
,
2014
, “
Finite Element Simulation of Nano-Indentation Experiment on Aluminum 1100
,”
Comput. Mater. Sci.
,
81
, pp.
595
600
.
3.
Terentyev
,
D.
,
Xiao
,
X.
,
Lemeshko
,
S.
,
Hangen
,
U.
, and
Zhurkin
,
E. E.
,
2020
, “
High Temperature Nanoindentation of Tungsten: Modelling and Experimental Validation
,”
Int. J. Refract. Met. Hard Mater.
,
89
, p.
105222
.
4.
Bressan
,
J. D.
,
Tramontin
,
A.
, and
Rosa
,
C.
,
2005
, “
Modeling of Nanoindentation of Bulk and Thin Film by Finite Element Method
,”
Wear
,
258
(
1-4 SPEC. ISS.
), pp.
115
122
.
5.
Wagih
,
A.
, and
Fathy
,
A.
,
2016
, “
Experimental Investigation and FE Simulation of Nano-Indentation on Al-Al2O3 Nanocomposites
,”
Adv. Powder Technol.
,
27
(
2
), pp.
403
410
.
6.
Lofaj
,
F.
, and
Németh
,
D.
,
2017
, “
The Effects of Tip Sharpness and Coating Thickness on Nanoindentation Measurements in Hard Coatings on Softer Substrates by FEM
,”
Thin Solid Films
,
644
, pp.
173
181
.
7.
Li
,
C.
,
Zhang
,
F.
,
Meng
,
B.
, and
Ma
,
Z.
,
2017
, “
Simulation and Experiment on Surface Morphology and Mechanical Properties Response in Nano-Indentation of 6H-SiC
,”
J. Mater. Eng. Perform.
,
26
(
3
), pp.
1000
1009
.
8.
Arrabiyeh
,
P. A.
,
Dethloff
,
M.
,
Müller
,
C.
,
Kirsch
,
B.
, and
Aurich
,
J. C.
,
2019
, “
Optimization of Micropencil Grinding Tools via Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031005
.
9.
Roy
,
T.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2018
, “
Numerical Modelling, Simulation and Fabrication of 3-D Hemi-Spherical Convex Micro Features Using Reverse Micro EDM
,”
J. Manuf. Process.
,
32
, pp.
344
356
.
10.
Lucca
,
D. A.
,
Klopfstein
,
M. J.
, and
Riemer
,
O.
,
2020
, “
Ultra-Precision Machining: Cutting With Diamond Tools
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110817
.
11.
Roy
,
T.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2018
, “
Numerical Modelling and Simulation of Surface Roughness of 3-D Hemispherical Convex Micro-Feature Generated by Reverse Micro-EDM
,”
Int. J. Adv. Manuf. Technol.
,
97
, pp.
979
992
.
12.
Roy
,
T.
, and
Balasubramaniam
,
R.
,
2019
, “
Effect of Various Factors Influencing the Generation of Hemispherical Micro Features Using Non-Conformal RMEDM
,”
J. Micromanuf.
,
2
(
2
), pp.
110
122
.
13.
Thao
,
O.
, and
Joshi
,
S. S.
,
2008
, “
Analysis of Heat Affected Zone in the Micro-Electric Discharge Machining
,”
Int. J. Manuf. Technol. Manag.
,
13
(
2/3/4
), p.
201
.
14.
Vu-Quoc
,
L.
, and
Zhang
,
X.
,
1999
, “
An Elastoplastic Contact Force-Displacement Model in the Normal Direction: Displacement-Driven Version
,”
Proc. R. Soc. A Math. Phys. Eng. Sci.
,
455
(
1991
).
15.
Lu
,
Y. C.
,
Kurapati
,
S. N. V. R. K.
, and
Yang
,
F.
,
2008
, “
Finite Element Analysis of Cylindrical Indentation for Determining Plastic Properties of Materials in Small Volumes
,”
J. Phys. D: Appl. Phys.
,
41
(
11
), p.
115415
.
16.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.
17.
Pharr
,
G. M.
, and
Bolshakov
,
A.
,
2002
, “
Understanding Nanoindentation Unloading Curves
,”
J. Mater. Res.
,
17
(
10
), pp.
2660
2671
.
18.
Fischer-Cripps
,
A. C.
,
2011
,
Nanoindentation
,
Springer
,
London
.
19.
Roy
,
T.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2020
,
Techno-Societal
, Vol.
2018
,
Springer
,
Cham
.
20.
Roy
,
T.
,
Datta
,
D.
, and
Balasubramaniam
,
R.
,
2019
, “
Reverse Micro EDMed 3D Hemispherical Protruded Micro Feature: Microstructural and Mechanical Characterization
,”
Mater. Res. Express
,
6
(
3
), p.
036513
.
21.
Lan
,
H.
, and
Venkatesh
,
T. A.
,
2014
, “
On the Relationships Between Hardness and the Elastic and Plastic Properties of Isotropic Power-Law Hardening Materials
,”
Philos. Mag.
,
94
(
1
), pp.
35
55
.
22.
Ashby
,
M.
,
Shercliff
,
H.
, and
Cebon
,
D.
,
2018
,
Materials: Engineering, Science, Processing and Design
, 4th ed.,
Butterworth-Heinemann
,
Oxford, UK
.
23.
Kim
,
T.-Y.
,
Dolbow
,
J. E.
, and
Fried
,
E.
,
2012
, “
Numerical Study of the Grain-Size Dependent Young’s Modulus and Poisson’s Ratio of Bulk Nanocrystalline Materials
,”
Int. J. Solids Struct.
,
49
(
26
), pp.
3942
3952
.
24.
Mohr
,
M.
,
Daccache
,
L.
,
Horvat
,
S.
,
Brühne
,
K.
,
Jacob
,
T.
, and
Fecht
,
H.-J.
,
2017
, “
Influence of Grain Boundaries on Elasticity and Thermal Conductivity of Nanocrystalline Diamond Films
,”
Acta Mater.
,
122
, pp.
92
98
.
You do not currently have access to this content.