Abstract

To overcome the challenge of upcycling plastic waste into three-dimensional (3D) printing filament in the distributed recycling and additive manufacturing systems, this study designs, builds, tests, and validates an open-source filament diameter sensor for recycling and winding machines. The modular system for multi-axis optical control of the diameter of the recycled 3D-printer filament makes it possible to scan part of the surface of the processed filament, save the history of measurements along the entire length of the spool, as well as mark defective areas. The sensor is developed as an independent module and integrated into a recyclebot. It was tested on different kinds of polymers (acrylonitrile butadiene styrene (ABS), polylactide (PLA)), different sources of plastic, and different colors including clear plastic. The results were compared with the manual measurements, and the measurements obtained with a one-dimensional digital light caliper. The results found that the developed open-source filament sensing method allows users to obtain significantly more information in comparison with basic one-dimensional light sensors and using the received data not only for more accurate diameter measurements but also for a detailed analysis of the recycled filament surface. This could help to expand the use of plastic recycling technologies in the manufacturing community. The availability of tools for possible texture analysis could also stimulate the growth of composite materials creation. The presented system can greatly enhance the user possibilities and serve as a starting point for a complete recycling control system that will regulate motor parameters to achieve the desired filament diameter with acceptable deviations and even control the extrusion rate on a printer to recover from filament irregularities.

References

1.
Geyer
,
R.
,
Jambeck
,
J. R.
, and
Law
,
K. L.
,
2017
, “
Production, Use, and Fate of all Plastics Ever Made
,”
Sci. Adv.
,
3
(
7
), p.
e1700782
.
2.
Joyce
,
C.
U.S. Recycling Industry Is Struggling To Figure Out A Future Without China
.” NPR. NPR, August 20, 2019, https://www.npr.org/2019/08/20/750864036/u-s-recycling-industry-is-struggling-to-figure-out-a-future-without-china, Accessed January 10, 2021.
3.
Nowakowski
,
K.
, and
McNaughton
,
S.
How China's Plastic Waste Ban Forced a Global Recycling Reckoning
.” Magazine, May 15, 2019, https://www.nationalgeographic.com/magazine/2019/06/china-plastic-waste-ban-impacting-countries-worldwide.ss, Accessed January 10, 2021.
4.
Brooks
,
A. L.
,
Wang
,
S.
, and
Jambeck
,
J. R.
,
2018
, “
The Chinese Import ban and its Impact on Global Plastic Waste Trade
,”
Sci. Adv.
,
4
(
6
), p.
eaat0131
.
5.
Katz
,
C.
Piling Up: How China’s Ban on Importing Waste Has Stalled Global Recycling
.” YaleE360, 2019, https://e360.yale.edu/features/piling-up-how-chinas-ban-on-importing-waste-has-stalled-global-recycling, Accessed January 10, 2021.
6.
Corkery
,
M.
As Costs Skyrocket, More U.S. Cities Stop Recycling
.” The New York Times, March 17, 2019, https://www.nytimes.com/2019/03/16/business/local-recycling-costs.html, Accessed January 10, 2021.
7.
Jambeck
,
J. R.
,
Geyer
,
R.
,
Wilcox
,
C.
,
Siegler
,
T. R.
,
Perryman
,
M.
,
Andrady
,
A.
,
Narayan
,
R.
, and
Law
,
K. L.
,
2015
, “
Plastic Waste Inputs From Land Into the Ocean
,”
Science
,
347
(
6223
), pp.
768
771
.
8.
Global 3D Printing Filament Market By Material, By Type, By End Use, By Region, Competition, Forecast & Opportunities
,
2024
, https://www.reportbuyer.com/product/5778909/global-3d-printing-filament-market-by-material-by-type-by-end-use-by-region-competition-forecast-and-opportunities-2024.html, Accessed January 10, 2021
9.
SmarTech Markets Publishing
, “
New SmarTech Analysis Report on Additive Manufacturing in the Oil and Gas Industry Finds $1B+ Opportunity for AM Hardware Manufacturers
.”
GlobeNewswire, June 4, 2019
, https://www.globenewswire.com/news-release/2019/06/04/1864243/0/en/New-SmarTech-Analysis-Report-on-Additive-Manufacturing-in-the-Oil-and-Gas-Industry-Finds-1B-Opportunity-for-AM-Hardware-Manufacturers.html, Accessed January 10, 2021.
10.
Carlota
,
V.
Why Is the Global Filament Material Market Expected to Grow Significantly?
” 3Dnatives, May 13, 2019, https://www.3dnatives.com/en/filament-material-market-130520195, Accessed January 10, 2021.
11.
Sells
,
E.
,
Bailard
,
S.
,
Smith
,
Z.
,
Bowyer
,
A.
, and
Olliver
,
V.
,
2009
,
Handbook of Research in Mass Customization and Personalization
,
World Scientific Publishing Company
,
Singapore
, pp.
568
580
.
12.
Jones
,
R.
,
Haufe
,
P.
,
Sells
,
E.
,
Iravani
,
P.
,
Olliver
,
V.
,
Palmer
,
C.
, and
Bowyer
,
A.
,
2011
, “
RepRap–the Replicating Rapid Prototype
,”
Robotica
,
29
(
1
), pp.
177
191
.
13.
Bowyer
,
A.
,
2014
, “
3D Printing and Humanity’s First Imperfect Replicator
,”
3D Print. Addit. Manuf.
,
1
(
1
), pp.
4
5
.
14.
Kreiger
,
M.
, and
Pearce
,
J. M.
,
2013
, “
Environmental Life Cycle Analysis of Distributed Three-Dimensional Printing and Conventional Manufacturing of Polymer Products
,”
ACS Sustainable Chem. Eng.
,
1
(
12
), pp.
1511
1519
.
15.
Kreiger
,
M. A.
, and
Pearce
,
J. M.
,
2013
, “
Environmental Impacts of Distributed Manufacturing From 3-D Printing of Polymer Components and Products
,”
Volume 1492 (Symposium D/G–Materials for Sustainable Development—Challenges and Opportunities).
16.
Faludi
,
J.
,
Cline-Thomas
,
N.
, and
Agrawala
,
S.
,
2017
,
The Next Production Revolution: Implications for Governments and Business
,
OECD Publishing
,
Paris, France
, pp.
171
213
.
17.
Gwamuri
,
J.
,
Wittbrodt
,
B. T.
,
Anzalone
,
N. C.
, and
Pearce
,
J. M.
,
2014
, “
Reversing the Trend of Large Scale and Centralization in Manufacturing: The Case of Distributed Manufacturing of Customizable 3-D-Printable Self-Adjustable Glasses
,”
Challenges Sustainab.
,
2
(
1
), pp.
30
40
.
18.
Wittbrodt
,
B. T.
,
Glover
,
A. G.
,
Laureto
,
J.
,
Anzalone
,
G. C.
,
Oppliger
,
D.
,
Irwin
,
J. L.
, and
Pearce
,
J. M.
,
2013
, “
Life-Cycle Economic Analysis of Distributed Manufacturing With Open-Source 3-D Printers
,”
Mechatronics
,
23
(
6
), pp.
713
726
.
19.
Petersen
,
E. E.
, and
Pearce
,
J.
,
2017
, “
Emergence of Home Manufacturing in the Developed World: Return on Investment for Open-Source 3-D Printers
,”
Technologies
,
5
(
1
), p.
7
.
20.
Petersen
,
E. E.
,
Kidd
,
R. W.
, and
Pearce
,
J. M.
,
2017
, “
Impact of DIY Home Manufacturing With 3D Printing on the Toy and Game Market
,”
Technologies
,
5
(
3
), p.
45
.
21.
Barrett
,
A.
Is PLA Recyclable?
” Bioplasticsnews, April 8, 2020, https://bioplasticsnews.com/2020/04/05/is-pla-recyclable, Accessed January 10, 2021.
22.
Obudho
,
B.
The 3D Printer Filament Recycler’s Guide
.” All3DP, December 28, 2020. https://all3dp.com/2/the-3d-printer-filament-recycler-s-guide, Accessed January 10, 2021.
23.
Jones
,
M.
PETG/PLA Recycling: How to Recycle 3D Printer Waste
.” All3DP, February 17, 2020, https://all3dp.com/2/3d-printer-recycled-plastic-tips-for-your-waste-plastic, Accessed January 10, 2021.
24.
Ritchie
,
H.
, and
Roser
,
M.
Plastic Pollution
.” Our World in Data, September 1, 2018, https://ourworldindata.org/plastic-pollution, Accessed January 10, 2021.
25.
Hopewell
,
J.
,
Dvorak
,
R.
, and
Kosior
,
E.
,
2009
, “
Plastics Recycling: Challenges and Opportunities
,”
Phil. Trans. R. Soc. B
,
364
(
1526
), pp.
2115
2126
.
26.
Zhong
,
S.
, and
Pearce
,
J. M.
,
2018
, “
Tightening the Loop on the Circular Economy: Coupled Distributed Recycling and Manufacturing With Recyclebot and RepRap 3-D Printing
,”
Resour. Conserv. Recycl.
,
128
, pp.
48
58
.
27.
Sanchez
,
F. A. C.
,
Boudaoud
,
H.
,
Camargo
,
M.
, and
Pearce
,
J. M.
,
2020
, “
Plastic Recycling in Additive Manufacturing: A Systematic Literature Review and Opportunities for the Circular Economy
,”
J. Clean. Prod.
,
264
, p.
121602
.
28.
Pavlo
,
S.
,
Fabio
,
C.
,
Hakim
,
B.
, and
Mauricio
,
C.
,
2018
, “
3D-Printing Based Distributed Plastic Recycling: A Conceptual Model for Closed-Loop Supply Chain Design
,”
Proceedings of the 2018 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC)
,
Stuttgart, Germany
, pp.
1
8
.
29.
Laplume
,
A. O.
,
Petersen
,
B.
, and
Pearce
,
J. M.
,
2016
, “
Global Value Chains From a 3D Printing Perspective
,”
J. Int. Bus. Stud.
,
47
, pp.
595
609
.
30.
Baechler
,
C.
,
DeVuono
,
M.
, and
Pearce
,
J. M.
,
2013
, “
Distributed Recycling of Waste Polymer Into RepRap Feedstock
,”
Rapid Prototyp. J.
,
19
(
2
), pp.
118
125
.
31.
Woern
,
A. L.
,
McCaslin
,
J. R.
,
Pringle
,
A. M.
, and
Pearce
,
J. M.
,
2018
, “
RepRapable Recyclebot: Open Source 3-D Printable Extruder for Converting Plastic to 3-D Printing Filament
,”
HardwareX
,
4
, p.
e00026
.
32.
Kreiger
,
M.
,
Anzalone
,
G. C.
,
Mulder
,
M. L.
,
Glover
,
A.
, and
Pearce
,
J. M.
,
2013
, “
Distributed Recycling of Post-Consumer Plastic Waste in Rural Areas
,”
MRS Online Proc. Libr. Arch.
,
1492
, pp.
91
96
.
33.
Kreiger
,
M. A.
,
Mulder
,
M. L.
,
Glover
,
A. G.
, and
Pearce
,
J. M.
,
2014
, “
Life Cycle Analysis of Distributed Recycling of Post-Consumer High Density Polyethylene for 3-D Printing Filament
,”
J. Clean. Prod.
,
70
, pp.
90
96
.
34.
Zhong
,
S.
,
Rakhe
,
P.
, and
Pearce
,
J. M.
,
2017
, “
Energy Payback Time of a Solar Photovoltaic Powered Waste Plastic Recyclebot System
,”
Recycling
,
2
(
2
), p.
10
.
35.
Dertinger
,
S. C.
,
Gallup
,
N.
,
Tanikella
,
N. G.
,
Grasso
,
M.
,
Vahid
,
S.
,
Foot
,
P. J. S.
, and
Pearce
,
J. M.
,
2020
, “
Technical Pathways for Distributed Recycling of Polymer Composites for Distributed Manufacturing: Windshield Wiper Blades
,”
Resour. Conserv. Recycl.
,
157
, p.
104810
.
36.
SHR3D IT Shredder, The Efficient Desktop Plastic Recycler
.” 3devo, September 28, 2020, https://3devo.com/shred-it, Accessed January 10, 2021.
37.
Filabot machines
.” Filabot, https://www.filabot.com/collections/filabot-core, Accessed January 10, 2021.
38.
Filastruders & Accessories
.” Filastruder, 2020, https://www.filastruder.com/collections/filastruders-accessories, Accessed January 10, 2021.
39.
ProtoCycler+
.” ReDeTec, 2020, https://redetec.com/products/protocycler, Accessed January 10, 2021.
40.
Ravindran
,
A.
,
Scsavnicki
,
S.
,
Nelson
,
W.
,
Gorecki
,
P.
,
Franz
,
J.
,
Oberloier
,
S.
,
Meyer
,
T. K.
,
Barnard
,
A. R.
, and
Pearce
,
J. M.
,
2019
, “
Open Source Waste Plastic Granulator
,”
Technologies
,
7
(
4
), p.
74
.
41.
Plastic Bank Extruder v1.0
.” Appropedia, 2020, https://www.appropedia.org/Plastic_Bank_Extruder_v1.0, Accessed January 10, 2021.
42.
Precious Plastic Basic Machines
.” Preciousplastic, 2020, https://preciousplastic.com/solutions/machines/basic.html, Accessed January 10, 2021.
43.
Cardona
,
C.
,
Curdes
,
A. H.
, and
Isaacs
,
A.
,
2016
, “
Effects of Filament Diameter Tolerances in Fused Filament Fabrication
,”
J. Undergrad. Res.
,
2
(
1
), pp.
44
47
.
44.
Bouthillier
,
J. L.
The Importance of High Quality 3D Printer Filament
.” Boots Industries, August 17, 2016, http://bootsindustries.com/the-importance-of-high-quality-3d-printer-filament, Accessed January 10, 2021.
45.
Huber
,
C.
,
Cano
,
S.
,
Teliban
,
I.
,
Schuschnigg
,
S.
,
Groenfeld
,
M.
, and
Seuss
,
D.
,
2020
, “
Polymer-Bonded Anisotropic SrFe12O19 Filaments for Fused Filament Fabrication
,”
J. Appl. Phys.
,
127
(
6
), p.
063904
.
46.
Li
,
Z.
,
Chen
,
W.
, and
Li
,
W.
,
2018
, “
Research on Photoelectric Measurement Method for Filament Diameter Based on FPGA
,”
Proceedings of the 9th International Symposium on Advanced Optical Manufacturing and Testing Technologies: Optical Test, Measurement Technology, and Equipment; vol. Vol. 10839, 108390D (2019), 2018
,
Chengdu, China
.
47.
Smithgall
,
D. H.
,
Watkins
,
L. S.
, and
Frazee
,
R. E.
,
1977
, “
High-Speed Noncontact Fiber-Diameter Measurement Using Forward Light Scattering
,”
Appl. Opt.
,
16
(
9
), pp.
2395
2402
.
48.
Gkartzou
,
E.
,
Koumoulos
,
E. P.
, and
Charitidis
,
C. A.
,
2017
, “
Production and 3D Printing Processing of Bio-Based Thermoplastic Filament
,”
Manufact. Rev.
,
4
, p.
1
.
49.
Kumar
,
S.
,
Singh
,
R.
,
Singh
,
T. P.
, and
Batish
,
A.
,
2019
, “
On Investigation of Rheological, Mechanical and Morphological Characteristics of Waste Polymer-Based Feedstock Filament for 3D Printing Applications
,”
J. Thermoplast. Compos. Mater.
50.
Al-Salem
,
S. M.
,
Lettieri
,
P.
, and
Baeyens
,
J.
,
2009
, “
Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review
,”
Waste Manage.
,
29
(
10
), pp.
2625
2643
.
51.
Ragaert
,
K.
,
Delva
,
L.
, and
Geem
,
K. V.
,
2017
, “
Mechanical and Chemical Recycling of Solid Plastic Waste
,”
Waste Manage.
,
69
, pp.
24
58
.
52.
Aly
,
A. A.
,
2015
, “
Heat Treatment of Polymers: A Review
,”
Int. J. Mater. Chem. Phys.
,
1
(
2
), pp.
132
140
.
53.
“OpenMV Cam H7.” OpenMV, https://openmv.io/products/openmv-cam-h7, Accessed January 10, 2021.
54.
Petsiuk
,
A.
, and
Pearce
,
J.
Optical 3-D Filament Diameter Sensor
.” OSF, October 8, 2020. https://osf.io/qdvu8, Accessed January 10, 2021.
55.
Hallo
,
B.
Printing Results for Homemade Recycled PLA Filament
.” 3D Hubs, August 7, 2015, https://www.3dhubs.com/talk/t/printing-results-for-homemade-recycled-pla-filament/2231, Accessed January 10, 2021.
56.
Sanchez
,
F. A. C.
,
Boudaoud
,
H.
,
Hoppe
,
S.
, and
Camargo
,
M.
,
2017
, “
Polymer Recycling in an Open-Source Additive Manufacturing Context: Mechanical Issues
,”
Addit. Manuf.
,
17
, pp.
87
105
.
57.
Mirón
,
V.
,
Ferrándiz
,
S.
,
Juárez
,
D.
, and
Mengual
,
A.
,
2017
, “
Manufacturing and Characterization of 3D Printer Filament Using Tailoring Materials
,”
Procedia Manuf.
,
13
, pp.
888
894
.
58.
“LulzBot TAZ 6.” LulzBot, June 20, 2019, https://www.lulzbot.com/store/printers/lulzbot-taz-6, Accessed January 10, 2021.
59.
Tanikella
,
N. G.
,
Wittbrodt
,
B.
, and
Pearce
,
J. M.
,
2017
, “
Tensile Strength of Commercial Polymer Materials for Fused Filament Fabrication 3D Printing
,”
Addit. Manuf.
,
15
, pp.
40
47
.
60.
Lanzotti
,
A.
,
Martorelli
,
M.
,
Maietta
,
S.
,
Gerbino
,
S.
,
Penta
,
F.
, and
Gloria
,
A.
,
2019
, “
A Comparison Between Mechanical Properties of Specimens 3D Printed With Virgin and Recycled PLA
,”
Procedia CIRP
,
79
, pp.
143
146
.
61.
Laureto
,
J. J.
, and
Pearce
,
J. M.
,
2018
, “
Anisotropic Mechanical Property Variance Between ASTM D638-14 Type i and Type iv Fused Filament Fabricated Specimens
,”
Polym. Test.
,
68
, pp.
294
301
.
62.
Hunt
,
E. J.
,
Zhang
,
C.
,
Anzalone
,
N.
, and
Pearce
,
J. M.
,
2015
, “
Polymer Recycling Codes for Distributed Manufacturing With 3-D Printers
,”
Resour. Conserv. Recycl.
,
97
, pp.
24
30
.
63.
Sanchez
,
F. A. C.
,
Lanza
,
S.
,
Boudaoud
,
H.
,
Hoppe
,
S.
, and
Camargo
,
M.
,
2015
, “
Polymer Recycling and Additive Manufacturing in an Open Source Context: Optimization of Processes and Methods
,”
Annual International Solid Freeform Fabrication Symposium, ISSF: 2015
,
Austin, TX,
p.
1591
.
64.
Anderson
,
I.
,
2017
, “
Mechanical Properties of Specimens 3D Printed With Virgin and Recycled Polylactic Acid
,”
3D Print. Addit. Manuf.
,
4
(
2
), pp.
110
115
.
65.
Pakkanen
,
J.
,
Manfredi
,
D.
,
Minetola
,
P.
, and
Iuliano
,
L.
,
2017
, “About the Use of Recycled or Biodegradable Filaments for Sustainability of 3D Printing,”
Proceedings of the Sustainable Design and Manufacturing
,
G.
Campana
,
R. J.
Howlett
,
R.
Setchi
, and
B.
Cimatti
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
776
785
.
66.
Mohammed
,
M. I.
,
Wilson
,
D.
,
Gomez-Kervin
,
E.
,
Vidler
,
C.
,
Rosson
,
L.
, and
Long
,
J.
,
2018
, “
The Recycling of E-Waste ABS Plastics by Melt Extrusion and 3D Printing Using Solar Powered Devices as a Transformative Tool for Humanitarian Aid
,”
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF 2018
,
University of Texas
,
Austin, TX
, pp.
80
92
.
67.
Mohammed
,
M. I.
,
Wilson
,
D.
,
Gomez-Kervin
,
E.
,
Rosson
,
L.
, and
Long
,
J.
,
2018
, “
EcoPrinting: Investigation of Solar Powered Plastic Recycling and Additive Manufacturing for Enhanced Waste Management and Sustainable Manufacturing
,”
Proceedings of the 2018 IEEE Conference on Technologies for Sustainability (SusTech)
,
Long Beach, CA
, pp.
1
6
.
68.
Zander
,
N. E.
,
Gillan
,
M.
, and
Lambeth
,
R. H.
,
2018
, “
Recycled Polyethylene Terephthalate as a New FFF Feedstock Material
,”
Addit. Manuf.
,
21
, pp.
174
182
.
69.
Lee
,
J. H.
,
Lim
,
K. S.
,
Hahm
,
W. G.
, and
Kim
,
S. H.
,
2013
, “
Properties of Recycled and Virgin Poly(Ethylene Terephthalate) Blend Fibers
,”
J. Appl. Polym. Sci.
,
128
(
2
), pp.
1250
1256
.
70.
Chong
,
S.
,
Pan
,
G.-T.
,
Khalid
,
M.
,
Yang
,
T. C.-K.
,
Hung
,
S.-T.
, and
Huang
,
C.-M.
,
2017
, “
Physical Characterization and Pre-Assessment of Recycled High-Density Polyethylene as 3D Printing Material
,”
J. Polym. Environ.
,
25
(
2
), pp.
136
145
.
71.
Pepi
,
M.
,
Zander
,
N.
, and
Gillan
,
M.
,
2018
, “
Towards Expeditionary Battlefield Manufacturing Using Recycled, Reclaimed, and Scrap Materials
,”
JOM
,
70
(
10
), pp.
2359
2364
.
72.
Woern
,
A. L.
, and
Pearce
,
J. M.
,
2017
, “
Distributed Manufacturing of Flexible Products: Technical Feasibility and Economic Viability
,”
Technologies
,
5
(
4
), p.
71
.
73.
Hart
,
K. R.
,
Frketic
,
J. B.
, and
Brown
,
J. R.
,
2018
, “
Recycling Meal-Ready-to-eat (MRE) Pouches Into Polymer Filament for Material Extrusion Additive Manufacturing
,”
Addit. Manuf.
,
21
, pp.
536
543
.
74.
Reich
,
M. J.
,
Woern
,
A. L.
,
Tanikella
,
N. G.
, and
Pearce
,
J. M.
,
2019
, “
Mechanical Properties and Applications of Recycled Polycarbonate Particle Material Extrusion-Based Additive Manufacturing
,”
Materials
,
12
(
10
), p.
1642
.
75.
Zander
,
N. E.
,
Gillan
,
M.
,
Burckhard
,
Z.
, and
Gardea
,
F.
,
2019
, “
Recycled Polypropylene Blends as Novel 3D Printing Materials
,”
Addit. Manuf.
,
25
, pp.
122
130
.
76.
Oblak
,
P.
,
Gonzalez-Gutierrez
,
J.
,
Zupančič
,
B.
,
Aulova
,
A.
, and
Emri
,
I.
,
2015
, “
Processability and Mechanical Properties of Extensively Recycled High Density Polyethylene
,”
Polym. Degrad. Stab.
,
114
, pp.
133
145
.
77.
Mohammed
,
M. I.
,
Wilson
,
D.
,
Gomez-Kervin
,
E.
,
Tang
,
B.
, and
Wang
,
J.
,
2019
, “
Investigation of Closed-Loop Manufacturing With Acrylonitrile Butadiene Styrene Over Multiple Generations Using Additive Manufacturing
,”
ACS Sustain. Chem. Eng.
,
7
(
16
), pp.
13955
13969
.
78.
Boldizar
,
A.
, and
Möller
,
K.
,
2003
, “
Degradation of ABS During Repeated Processing and Accelerated Ageing
,”
Polym. Degrad. Stab.
,
81
(
2
), pp.
359
366
.
79.
Tian
,
X.
,
Liu
,
T.
,
Wang
,
Q.
,
Dilmurat
,
A.
,
Li
,
D.
, and
Ziegmann
,
G.
,
2017
, “
Recycling and Remanufacturing of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites
,”
J. Clean. Prod.
,
142
, pp.
1609
1618
.
80.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
.
81.
Heller
,
B. P.
,
Smith
,
D. E.
, and
Jack
,
D. A.
,
2019
, “
Planar Deposition Flow Modeling of Fiber Filled Composites in Large Area Additive Manufacturing
,”
Addit. Manuf.
,
25
, pp.
227
238
.
82.
Pringle
,
A. M.
,
Rudnicki
,
M.
, and
Pearce
,
J. M.
,
2017
, “
Wood Furniture Waste–Based Recycled 3-D Printing Filament
”,
For. Prod. J.
,
68
, pp.
86
95
.
83.
Zander
,
N. E.
,
2019
, “
Recycled Polymer Feedstocks for Material Extrusion Additive Manufacturing
,”
Proceedings of the Polymer-Based Additive Manufacturing: Recent Developments, ACS Symposium Series
,
American Chemical Society
,
Washington, DC
, vol. 1315, pp.
37
51
.
84.
Greeff
,
G. P.
, and
Schilling
,
M.
,
2017
, “
Closed Loop Control of Slippage During Filament Transport in Molten Material Extrusion
,”
Addit. Manuf.
,
14
, pp.
31
38
.
85.
Coetzee
,
G.
Filament Thickness Sensors, What Are They And What Are They Good For?
” Hackaday, February 7, 2016, https://hackaday.com/2016/02/05/filament-thickness-sensors-what-are-they-and-what-are-they-good-for, Accessed January 10, 2021.
86.
Seifi
,
S. H.
,
Tian
,
W.
,
Doude
,
H.
,
Tschopp
,
M. A.
, and
Bian
,
L.
,
2019
, “
Layer-Wise Modeling and Anomaly Detection for Laser-Based Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
8
), p.
081013
.
87.
Imani
,
F.
,
Chen
,
R.
,
Diewald
,
E.
,
Reutzel
,
E.
, and
Yang
,
H.
,
2019
, “
Deep Learning of Variant Geometry in Layerwise Imaging Profiles for Additive Manufacturing Quality Control
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111001
.
88.
Petsiuk
,
A. L.
, and
Pearce
,
J. M.
,
2020
, “
Open Source Computer Vision-Based Layer-Wise 3D Printing Analysis
,”
Addit. Manuf.
,
36
, p.
101473
.
89.
Zhao
,
D.
, and
Guo
,
W.
,
2020
, “
Shape and Performance Controlled Advanced Design for Additive Manufacturing: A Review of Slicing and Path Planning
,”
ASME J. Manuf. Sci. Eng.
,
142
(
1
), p.
010801
.
You do not currently have access to this content.