Abstract

Additive manufacturing (AM) is widely recognized as a critical pillar of advanced manufacturing and is moving from the design shop to the factory floor. As AM processes become more popular, it is paramount that engineers and policymakers understand and then reduce their environmental impacts. This article structures the current work on the environmental impacts of metal powder bed processes: selective laser melting (SLM), direct metal laser sintering (DMLS), electron beam melting (EBM), and binder jetting (BJ). We review the potential benefits and pitfalls of AM in each phase of a part's lifecycle and in different application domains (e.g., remanufacturing and hybrid manufacturing). We highlight critical uncertainties and future research directions throughout. The environmental impacts of AM are sensitive to the specific production and use-phase context; however, several broad lessons can be extracted from the literature. Unlike in conventional manufacturing, powder bed production impacts are dominated by the generation of the direct energy (electricity) required to operate the AM machines. Combined with a more energy-intensive feedstock (metal powder), this means that powder bed production impacts are higher than in conventional manufacturing unless production volumes are very small (saving tool production impacts), and/or there are significant material savings through part light weighting or improved buy-to-fly ratios.

References

References
1.
Gutowski
,
T.
,
Jiang
,
S.
,
Cooper
,
D.
,
Corman
,
G.
,
Hausmann
,
M.
,
Manson
,
J.-A.
,
Schudeleit
,
T.
,
Wegener
,
K.
,
Sabelle
,
M.
,
Ramos-Grez
,
J.
, and
Sekulic
,
D. P.
,
2017
, “
Note on the Rate and Energy Efficiency Limits for Additive Manufacturing
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S69
S79
. 10.1111/jiec.12664
2.
Bai
,
Y.
, and
Williams
,
C. B.
,
2015
, “
An Exploration of Binder Jetting of Copper
,”
Rapid Prototyp. J.
,
21
(
2
), pp.
177
185
.
3.
Gokuldoss
,
P. K.
,
Kolla
,
S.
, and
Eckert
,
J.
,
2017
, “
Additive Manufacturing Processes: Selective Laser Melting, Electron Beam Melting and Binder Jetting—Selection Guidelines
,”
Materials
,
10
(
6
),
672
. 10.3390/ma10060672
4.
Frazier
,
W. E.
,
2014
, “
Metal Additive Manufacturing: A Review
,”
J. Mater. Eng. Perform.
,
23
(
6
), pp.
1917
1928
. 10.1007/s11665-014-0958-z
5.
Lifset
,
R.
,
Baumers
,
M.
, and
Gutowski
,
T.
,
2018
, “
It’s Too Soon to Call 3D Printing a Green Technology,” the conversation
,” https://theconversation.com/its-too-soon-to-call-3d-printing-a-green-technology-89212, Accessed December 1, 2019.
6.
Duda
,
T.
, and
Raghavan
,
L. V.
,
2016
, “
3D Metal Printing Technology
,”
IFAC-PapersOnLine
,
49
(
29
), pp.
103
110
. 10.1016/j.ifacol.2016.11.111
7.
Huang
,
R.
,
Riddle
,
M.
,
Graziano
,
D.
,
Warren
,
J.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2016
, “
Energy and Emissions Saving Potential of Additive Manufacturing: the Case of Lightweight Aircraft Components
,”
J. Clean. Prod.
,
135
, pp.
1559
1570
.
8.
Baumers
,
M.
,
Tuck
,
C.
,
Hague
,
R.
,
Ashcroft
,
I.
, and
Wildman
,
R.
,
2010
, “
A Comparative Study of Metallic Additive Manufacturing Power Consumption
,”
SFF Symposium 2010
,
Austin, TX
,
August
, pp.
278
288
.
9.
Kellens
,
K.
,
Yasa
,
E.
,
Renaldi
,
W.
,
Dewulf
,
J. P. K.
, and
Duflou
,
J. R.
,
2011
, “
Energy and Resource Efficiency of SLS/SLM Processes
,”
SFF Symposium 2011
,
Austin, TX
,
August
.
10.
Faludi
,
J.
,
Baumers
,
M.
,
Maskery
,
I.
, and
Hague
,
R.
,
2017
, “
Environmental Impacts of Selective Laser Melting: Do Printer, Powder, Or Power Dominate?
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S144
S156
. 10.1111/jiec.12528
11.
Ashby
,
F. M.
,
2012
,
Materials and the Environment: Eco-Informed Material Choice
, 2nd ed.,
Elsevier
,
New York
.
12.
Thomas
,
D. S.
, and
Gilbert
,
S. W.
,
2015
, “
Costs and Cost Effectiveness of Additive Manufacturing: A Literature Review and Discussion
,”
NIST Special Publication
,
1176
, p.
12
.www.nist.gov/publications/costs-and-cost-effectiveness-additivemanufacturing
13.
Costabile
,
G.
,
Fera
,
M.
,
Fruggiero
,
F.
,
Lambiase
,
A.
, and
Pham
,
D.
,
2017
, “
Cost Models of Additive Manufacturing: A Literature Review
,”
Int. J. Ind. Eng. Comput.
,
8
(
2
), pp.
263
282
.
14.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
The Energy Requirements and Environmental Impacts of Sheet Metal Forming: An Analysis of Five Forming Processes
,”
J. Mater. Process. Technol.
,
244
, pp.
116
135
. 10.1016/j.jmatprotec.2017.01.010
15.
Faludi
,
J.
,
Bayley
,
C.
,
Bhogal
,
S.
, and
Iribarne
,
M.
,
2015
, “
Comparing Environmental Impacts of Additive Manufacturing vs Traditional Machining via Life-Cycle Assessment
,”
Rapid Prototyp. J.
,
21
(
1
), pp.
14
33
. 10.1108/RPJ-07-2013-0067
16.
Baumers
,
M.
,
Dickens
,
P.
,
Tuck
,
C.
, and
Hague
,
R.
,
2015
, “
The Cost of Additive Manufacturing : Machine Productivity, Economies of Scale and Technology-Push
,”
Technol. Forecast. Soc. Chang.
,
102
, pp.
193
201
. 10.1016/j.techfore.2015.02.015
17.
Baumers
,
M.
,
2012
,
Economic Aspects of Additive Manufacturing: Benefits, Costs and Energy Consumption
, PhD. thesis, Loughborough University.
18.
Lindemann
,
C.
,
Jahnke
,
U.
,
Moi
,
M.
, and
Koch
,
R.
,
2012
, “
Analyzing Product Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing
,”
SFF Symposium 2012
,
Austin, TX
,
August
, pp.
177
188
.
19.
Piili
,
H.
,
Happonen
,
A.
,
Väistö
,
T.
,
Venkataramanan
,
V.
,
Partanen
,
J.
, and
Salminen
,
A.
,
2015
, “
Cost Estimation of Laser Additive Manufacturing of Stainless Steel
,”
Phys. Proc.
,
78
, pp.
388
396
. 10.1016/j.phpro.2015.11.053
20.
Baumers
,
M.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
,
Rosamond
,
E.
, and
Hague
,
R.
,
2013
, “
Transparency Built-in: Energy Consumption and Cost Estimation for Additive Manufacturing
,”
J. Ind. Ecol.
,
17
(
3
), pp.
418
431
. 10.1111/j.1530-9290.2012.00512.x
21.
Liu
,
Z.
,
2017
,
Economic Comparison of Selective Laser Melting and Conventional Subtractive Manufacturing Processes
, Master's thesis, Northeastern University.
22.
MIT
,
2016
, “
Additive Manufacturing: From 3D Printing to the Factory Floor
,”
MIT Professional Education
. https://professional.mit.edu/programs/short-programs/additive-manufacturing, Accessed December 1, 2019.
23.
AMFG
,
2018
, “
A Guide to the Top 5 Industrial Binder Jetting Machines
,”
Autonomous Manufacturing
, https://amfg.ai/2018/04/27/top-5-binder-jetting-machines/, Accessed December 1, 2019.
24.
Desktop metal
,
2019
, “
Desktop Metal, Shop System
,”
Desktop metal
, https://www.desktopmetal.com/products/shop, Accessed December 1, 2019.
25.
Aniwaa
,
2019
, “
EXONE M-Flex
,”
Aniwaa
, https://www.aniwaa.com/product/3d-printers/exone-m-flex/, Accessed December 1, 2019.
26.
Walachowicz
,
F.
,
Bernsdorf
,
I.
,
Papenfuss
,
U.
,
Zeller
,
C.
,
Graichen
,
A.
,
Navrotsky
,
V.
,
Rajvanshi
,
N.
, and
Kiener
,
C.
,
2017
, “
Comparative Energy, Resource and Recycling Lifecycle Analysis of the Industrial Repair Process of Gas Turbine Burners Using Conventional Machining and Additive Manufacturing
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S203
S215
. 10.1111/jiec.12637
27.
Ecoinvent
,
2016
, “
Cumulative Energy for Nitrogen and Argon Manufacturing
,”
Ecoinvent
, http://www.ecoinvent.org. Accessed March 1, 2016.
28.
Serres
,
N.
,
Tidu
,
D.
,
Sankare
,
S.
, and
Hlawka
,
F.
,
2011
, “
Environmental Comparison of MESO-CLAD Ò Process and Conventional Machining Implementing Life Cycle Assessment
,”
J. Clean. Prod.
,
19
(
9–10
), pp.
1117
1124
. 10.1016/j.jclepro.2010.12.010
29.
Baumers
,
M.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2017
, “
Shape Complexity and Process Energy Consumption in Electron Beam Melting: A Case of Something for Nothing in Additive Manufacturing?
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S157
S167
. 10.1111/jiec.12397
30.
Milford
,
R. L.
,
Allwood
,
J. M.
, and
Cullen
,
J. M.
,
2011
, “
Assessing the Potential of Yield Improvements, Through Process Scrap Reduction, for Energy and CO2 Abatement in the Steel and Aluminium Sectors
,”
Resources, Conserv. Recycl.
,
55
(
12
), pp.
1185
1195
. 10.1016/j.resconrec.2011.05.021
31.
Norgate
,
T. E.
,
Jahanshahi
,
S.
, and
Rankin
,
W. J.
,
2007
, “
Assessing the Environmental Impact of Metal Production Processes
,”
J. Clean. Prod.
,
15
(
8–9
), pp.
838
848
. 10.1016/j.jclepro.2006.06.018
32.
Jackson
,
M. A.
,
Van Asten
,
A.
,
Morrow
,
J. D.
,
Min
,
S.
, and
Pfefferkorn
,
F. E.
,
2016
, “
A Comparison of Energy Consumption in Wire-Based and Powder-Based Additive-Subtractive Manufacturing
,”
Procedia Manuf.
,
5
, pp.
989
1005
. 10.1016/j.promfg.2016.08.087
33.
Kruzhanov
,
V.
, and
Arnhold
,
V.
,
2012
, “
Energy Consumption in Powder Metallurgical Manufacturing
,”
Powder Metall.
,
55
(
1
), pp.
14
21
. 10.1179/174329012X13318077875722
34.
Morrow
,
W. R.
,
Qi
,
H.
,
Kim
,
I.
,
Mazumder
,
J.
, and
Skerlos
,
S. J.
,
2007
, “
Environmental Aspects of Laser-Based and Conventional Tool and Die Manufacturing
,”
J. Clean. Prod.
,
15
(
10
), pp.
932
943
. 10.1016/j.jclepro.2005.11.030
36.
Liu
,
Z. Y.
,
Li
,
C.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
Energy Consumption in Additive Manufacturing of Metal Parts
,”
Procedia Manuf.
,
26
, pp.
834
845
. 10.1016/j.promfg.2018.07.104
37.
Metal Miner
,
2019
, “
Stainless Steel Price
,”
Metal Miner
, https://agmetalminer.com/metal-prices/stainless-steel/, Accessed December 2, 2019.
38.
Baumers
,
M.
,
Duflou
,
J. R.
,
Flanagan
,
W.
,
Gutowski
,
T. G.
,
Kellens
,
K.
, and
Lifset
,
R.
,
2017
, “
Charting the Environmental Dimensions of Additive Manufacturing and 3D Printing
,”
J. Ind. Ecol.
,
21
, pp.
S9
S14
. 10.1111/jiec.12668
39.
Yule
,
A. J.
, and
Dunkley
,
J. J.
,
1994
,
Atomization of Melts for Powder Production and Spray Deposition
,
Oxford University Press
,
USA
.
40.
Metals Piping
,
2019
, “
Ti6Al4V Bulk Form Cost
,”
Hebei Metals Industrial Limited
, http://www.metalspiping.com/titanium-alloy-ti-6al-4v.html, Accessed December 1, 2019.
41.
Popovich
,
A.
, and
Sufiiarov
,
V.
,
2014
, “Metal Powder Additive Manufacturing,”
New Trends in 3D Printing
,
I. V.
Shishkovsky
, ed.,
IntechOpen
,
Croatia
.
42.
Azevedo
,
J. M. C.
,
Serrenho
,
A. C.
, and
Allwood
,
J. M.
,
2018
, “
Energy and Material Efficiency of Steel Powder Metallurgy
,”
Powder Technol.
,
328
, pp.
329
336
. 10.1016/j.powtec.2018.01.009
43.
Anderson
,
I. E.
,
White
,
E. M. H.
, and
Dehoff
,
R.
,
2018
, “
Feedstock Powder Processing Research Needs for Additive Manufacturing Development
,”
Curr. Opin. Solid State Mater. Sci.
,
22
(
1
), pp.
8
15
. 10.1016/j.cossms.2018.01.002
44.
Paris
,
H.
,
Mokhtarian
,
H.
,
Coatanéa
,
E.
,
Museau
,
M.
, and
Ituarte
,
I. F.
,
2016
, “
Comparative Environmental Impacts of Additive and Subtractive Manufacturing Technologies
,”
CIRP Ann.—Manuf. Technol.
,
65
(
1
), pp.
29
32
. 10.1016/j.cirp.2016.04.036
45.
Dawes
,
J.
,
Bowerman
,
R.
, and
Trepleton
,
R.
,
2015
, “
Introduction to the Additive Manufacturing Powder Metallurgy Supply Chain
,”
Johnson Matthey Technol. Rev.
,
59
(
3
), pp.
243
256
. 10.1595/205651315X688686
46.
Wohlers
,
T. T.
, and
Caffrey
,
T.
,
2015
,
Wohlers Report 2015: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report
,
Wohlers Associates, Inc.
47.
McMaster-Carr
,
2019
, “
Powder Cost
,”
McMaster-Carr
, https://www.mcmaster.com/powdered-metals. Accessed December 1, 2019.
48.
Digital Alloys
,
2019
, “
Metal Binder Jetting
,”
Digital Alloys
, https://www.digitalalloys.com/blog/binder-jetting/, Accessed December 1, 2019.
49.
Jacob
,
J. E.
,
Schoenung
,
J. M.
,
Lavernia
,
E. J.
,
Clark
,
J. P.
, and
Grant
,
N. J.
,
1987
, “
Cost Modeling RS Powders Produced by Inert Gas Atomization
,”
J. Am. Soc. Inf. Sci.
,
39
(
10
), pp.
19
21
.
50.
Lutter-günther
,
M.
,
Hofmann
,
A.
,
Hauck
,
C.
,
Seidel
,
C.
, and
Reinhart
,
G.
,
2016
, “
Quantifying Powder Losses and Analyzing Powder Conditions in Order to Determine Material Efficiency in Laser Beam Melting
,”
Appl. Mech. Mater.
,
856
, pp.
231
237
. www.scientific.net/AMM.856.231
51.
Inside Metal Additive Manufacturing
,
2017
, “
High-Efficiency Powder Utilisation Rate in SLM: Dream or Reality?
,”
Inside Metal Additive Manufacturing
, https://www.insidemetaladditivemanufacturing.com/blog/high-efficiency-powder-utilisation-rate-in-slm-dream-or-reality, Accessed December 1, 2019.
52.
Gebbe
,
C.
,
Lutter-Günther
,
M.
,
Greiff
,
B.
,
Glasschröder
,
J.
, and
Reinhart
,
G.
,
2015
, “
Measurement of the Resource Consumption of a Selective Laser Melting Process
,”
Appl. Mech. Mater.
,
805
, pp.
205
212
. www.scientific.net/AMM.805.205
53.
Wolf
,
S. D.
,
2019
,
Arcam AB S12—Electron Beam Melting (EBM)—for Ti6Al4V
,
Carnegie Mellon University
, https://engineering.cmu.edu/next/facilities/details-cost.html, Accessed December 1, 2019.
54.
Arnold
,
K.
,
2019
,
AM 101: Binder Jetting
,
Additive Manufacturing
, https://www.additivemanufacturing.media/blog/post/am-101-binder-jetting, Accessed December 1, 2019.
55.
Atzeni
,
E.
, and
Salmi
,
A.
,
2015
, “
Study on Unsupported Overhangs of AlSi10Mg Parts Processed by Direct Metal Laser Sintering (DMLS)
,”
J. Manuf. Process.
,
20
, pp.
500
506
. 10.1016/j.jmapro.2015.04.004
56.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C. L.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
Comput. Des.
,
65
, pp.
1
10
.
57.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
A New Approach to the Design and Optimisation of Support Structures in Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1247
1254
. 10.1007/s00170-012-4403-x
58.
Math Curve
,
2017
, “
Schwarz ‘D’ and ‘P’ Minimal Surfaces
,”
Math Curve
, https://www.mathcurve.com/surfaces.gb/schwarz/schwarz.shtml, Accessed December 2, 2019.
59.
Hussein
,
A.
,
Hao
,
L.
,
Yan
,
C.
,
Everson
,
R.
, and
Young
,
P.
,
2013
, “
Advanced Lattice Support Structures for Metal Additive Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
7
), pp.
1019
1026
. 10.1016/j.jmatprotec.2013.01.020
60.
Math Curve
,
2017
, “
Gyroid
,”
Math Curve
, https://www.mathcurve.com/surfaces.gb/Gyroide/gyroide.shtml, Accessed December 2, 2019.
61.
Baumers
,
M.
, and
Holweg
,
M.
,
2019
, “
On the Economics of Additive Manufacturing: Experimental Findings
,”
J. Oper. Manag.
,
65
(
8
), pp.
794
809
.
62.
Merkt
,
S.
,
Hinke
,
C.
,
Schleifenbaum
,
H.
, and
Voswinckel
,
H.
,
2011
, “
Geometric Complexity Analysis in an Integrative Technology Evaluation Model (ITEM) for Selective Laser Melting (SLM)
,”
South African J. Ind. Eng.
,
23
(
2
), pp.
97
105
.
63.
Tang
,
H. P.
,
Qian
,
M.
,
Liu
,
N.
,
Zhang
,
X. Z.
,
Yang
,
G. Y.
, and
Wang
,
J.
,
2015
, “
Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting
,”
JOM
,
67
(
3
), pp.
555
563
. 10.1007/s11837-015-1300-4
64.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
65.
Asgari
,
H.
,
Baxter
,
C.
,
Hosseinkhani
,
K.
, and
Mohammadi
,
M.
,
2017
, “
On Microstructure and Mechanical Properties of Additively Manufactured AlSi10Mg_200C Using Recycled Powder
,”
Mater. Sci. Eng. A
,
707
, pp.
148
158
. 10.1016/j.msea.2017.09.041
66.
Gorji
,
N. E.
,
O’Connor
,
R.
,
Mussatto
,
A.
,
Snelgrove
,
M.
,
González
,
P. G. M.
, and
Brabazon
,
D.
,
2019
, “
Recyclability of Stainless Steel (316L) Powder Within the Additive Manufacturing Process
,”
Materialia
,
8
, p.
100489
. 10.1016/j.mtla.2019.100489
67.
Cordova
,
L.
,
Campos
,
M.
, and
Tinga
,
T.
,
2019
, “
Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterization
,”
JOM
,
71
(
3
), pp.
1062
1072
. 10.1007/s11837-018-3305-2
68.
Renderos
,
M.
,
Girot
,
F.
,
Lamikiz
,
A.
,
Torregaray
,
A.
, and
Saintier
,
N.
,
2016
, “
Ni Based Powder Reconditioning and Reuse for LMD Process
,”
Phys. Procedia
,
83
, pp.
769
777
. 10.1016/j.phpro.2016.08.079
69.
Hausmann
,
M.
,
2015
,
State of Technology, Cost, Time and Energy Perspectives of Selective Laser Sintering
,
MIT
,
Cambridge, MA
.
70.
Nandwana
,
P.
,
Peter
,
W. H.
,
Dehoff
,
R. R.
,
Lowe
,
L. E.
,
Kirka
,
M. M.
,
Medina
,
F.
, and
Babu
,
S. S.
,
2016
, “
Recyclability Study on Inconel 718 and Ti-6Al-4V Powders for Use in Electron Beam Melting
,”
Metall. Mater. Trans. B
,
47
(
1
), pp.
754
762
.
71.
Kellens
,
K.
,
Mertens
,
R.
,
Paraskevas
,
D.
,
Dewulf
,
W.
, and
Duflou
,
J. R.
,
2017
, “
Environmental Impact of Additive Manufacturing Processes: Does AM Contribute to a More Sustainable Way of Part Manufacturing?
Procedia CIRP
,
61
, pp.
582
587
. 10.1016/j.procir.2016.11.153
72.
Tang
,
Y.
,
Mak
,
K.
, and
Zhao
,
Y. F.
,
2016
, “
A Framework to Reduce Product Environmental Impact Through Design Optimization for Additive Manufacturing
,”
J. Clean. Prod.
,
137
, pp.
1560
1572
. 10.1016/j.jclepro.2016.06.037
73.
Baumers
,
M.
,
Tuck
,
C.
,
Wildman
,
R.
,
Ashcroft
,
I.
, and
Hague
,
R.
,
2011
, “
Energy Inputs to Additive Manufacturing: Does Capacity Utilization Matter?
SFF Symposium 2011
,
Austin, Texas, USA
,
2011-08
.
74.
London Metal Exchange
,
2019
, “
Cost of Metal Bulk Form
,”
London Metal Exchange
, https://www.lme.com/, Accessed December 1, 2019.
75.
Carter
,
W. T.
,
Erno
,
D. J.
,
Abbott
,
D. H.
,
Bruck
,
C. E.
,
Wilson
,
G. H.
,
Wolfe
,
J. B.
,
Finkhousen
,
D. M.
,
Tepper
,
A.
, and
Stevens
,
R. G.
,
2014
, “
The GE Aircraft Engine Bracket Challenge: An Experiment in Crowdsourcing for Mechanical Design Concepts
,”
SFF Symposium
, pp.
1402
1411
.
76.
Sutherland
,
J.
,
Skerlos
,
S.
,
Cooper
,
D.
,
Haapala
,
K.
, and
Zhao
,
F.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.10.1115/10.1115/1.4047620
77.
Tekkaya
,
E. A.
,
Schikorra
,
M.
,
Becker
,
D.
,
Biermann
,
D.
,
Hammer
,
N.
, and
Pantke
,
K.
,
2009
, “
Hot Profile Extrusion of AA-6060 Aluminum Chips
,”
J. Mater. Process. Technol.
,
209
(
7
), pp.
3343
3350
.
78.
Meteyer
,
S.
,
Xu
,
X.
,
Perry
,
N.
, and
Zhao
,
Y. F.
,
2014
, “
Energy and Material Flow Analysis of Binder-Jetting Additive Manufacturing Processes
,”
Procedia CIRP
,
15
, pp.
19
25
. 10.1016/j.procir.2014.06.030
79.
Rickenbacher
,
L.
,
Spierings
,
A.
, and
Wegener
,
K.
,
2013
, “
An Integrated Cost-Model for Selective Laser Melting (SLM)
,”
Rapid Prototyp. J.
,
19
(
3
), pp.
208
214
. 10.1108/13552541311312201
80.
Munguía
,
J.
,
Ciurana
,
J.
, and
Riba
,
C.
,
2009
, “
Neural-Network-based Model for Build-Time Estimation in Selective Laser Sintering
,”
Proc. Inst. Mech. Eng. B: J. Eng. Manuf.
,
223
(
8
), pp.
995
1003
. 10.1243/09544054JEM1324
81.
Kumbhar
,
N. N.
, and
Mulay
,
A. V.
,
2018
, “
Post Processing Methods Used to Improve Surface Finish of Products Which Are Manufactured by Additive Manufacturing Technologies: A Review
,”
J. Inst. Eng. Ser. C
,
99
(
4
), pp.
481
487
. 10.1007/s40032-016-0340-z
82.
Ahlfors
,
A. M.
,
Hjärne
,
J.
, and
Shipley
,
J.
,
2018
,
Cost Effective Hot Isostatic Pressing—A Cost Calculation Study for AM Parts
,
Quintus Technology
. https://quintustechnologies.com/knowledge-center/white-papercost-effective-hip-a-cost-calculation-study-for-am-parts/
83.
Gardan
,
N.
,
Schneider
,
A.
, and
Gardan
,
J.
,
2016
, “
Material and Process Characterization for Coupling Topological Optimization to Additive Manufacturing
,”
Comput. Des. Appl.
,
13
(
1
), pp.
39
49
.
84.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2016
, “
Bridging Topology Optimization and Additive Manufacturing
,”
Struct. Multidiscip. Optim.
,
53
(
1
), pp.
175
192
. 10.1007/s00158-015-1274-4
85.
Ponche
,
R.
,
Hascoet
,
J.-Y.
,
Kerbrat
,
O.
, and
Mognol
,
P.
,
2012
, “
A New Global Approach to Design for Additive Manufacturing
,”
Virtual Phys. Prototyp.
,
7
(
2
), pp.
93
105
. 10.1080/17452759.2012.679499
86.
Go
,
J.
,
Schiffres
,
S. N.
,
Stevens
,
A. G.
, and
Hart
,
A. J.
,
2017
, “
Rate Limits of Additive Manufacturing by Fused Filament Fabrication and Guidelines for High-Throughput System Design
,”
Addit. Manuf.
,
16
, pp.
1
11
.
87.
Cardone
,
M.
, and
Gargiulo
,
B.
,
2018
, “
Design and Experimental Testing of a Mini Channel Heat Exchanger Made in Additive Manufacturing
,”
Energy Procedia
,
148
, pp.
932
939
. 10.1016/j.egypro.2018.08.092
88.
Venkatesh
,
G.
,
Ravi Kumar
,
Y.
, and
Raghavendra
,
G.
,
2017
, “
Comparison of Straight Line to Conformal Cooling Channel in Injection Molding
,”
Mater. Today Proc.
,
4
(
2
), pp.
1167
1173
. 10.1016/j.matpr.2017.01.133
89.
Burkhart
,
M.
, and
Aurich
,
J. C.
,
2015
, “
Framework to Predict the Environmental Impact if Additive Manufacturing in the Life Cycle of a Commercial Vehicle
,”
Procedia CIRP
,
29
(0), pp.
408
413
. 10.1016/j.procir.2015.02.194
90.
Reyes Belmonte
,
M.
,
Copeland
,
C.
,
Histop
,
D.
,
Hoplins
,
G.
,
Schmieder
,
A.
,
Bredda
,
S.
, and
Akehurst
,
S.
,
2015
, “
Improving Heat Transfer and Reducing Mass in a Gasoline Piston Using Additive Manufacturing
,”
SAE Technical Paper
. https://www.sae.org/publications/technical-papers/content/2015-01-0505/
91.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
. 10.1007/s11465-013-0248-8
92.
CRP Technology
,
2019
, “
CRP Technology
,”
CRP Technology
, https://www.crptechnology.com/, Accessed December 2, 2019.
93.
Mackenzie
,
D.
,
Zoepf
,
S.
, and
Heywood
,
J.
,
2014
, “
Determinants of US Passenger Car Weight
,”
Int. J. Veh. Des.
,
65
(
1
),
73
. 10.1504/IJVD.2014.060066
94.
Boeing
,
2019
, “
Boeing
,”
Boeing
, http://www.boeing.com/, Accessed December 2, 2019.
95.
Cooper
,
D. R.
, and
Gutowski
,
T. G.
,
2018
, “
Prospective Environmental Analyses of Emerging Technology: A Critique, a Proposed Methodology, and a Case Study on Incremental Sheet Forming
,”
J. Ind. Ecol.
,
24
(
1
), pp.
38
51
.
96.
Cooper
,
D. R.
, and
Gutowski
,
T. G.
,
2015
, “
The Environmental Impacts of Reuse A Review
,”
J. Ind. Ecol.
,
21
(
1
), pp.
38
56
.
97.
Knofius
,
N.
,
van der Heijden
,
M. C.
, and
Zijm
,
W. H. M.
,
2019
, “
Consolidating Spare Parts for Asset Maintenance With Additive Manufacturing
,”
Int. J. Prod. Econ.
,
208
, pp.
269
280
. 10.1016/j.ijpe.2018.11.007
98.
Milford
,
R. L.
,
Pauliuk
,
S.
,
Allwood
,
J. M.
, and
Müller
,
D. B.
,
2013
, “
The Roles of Energy and Material Efficiency in Meeting Steel Industry CO2 Targets
,”
Environ. Sci. Technol.
,
47
(
7
), pp.
3455
3462
. 10.1021/es3031424
99.
Zhu
,
Y.
, and
Cooper
,
D. R.
,
2019
, “
An Optimal Reverse Material Supply Chain for U.S. Aluminum Scrap
,”
Procedia CIRP
,
80
, pp.
677
682
. 10.1016/j.procir.2019.01.065
100.
Cooper
,
D. R.
,
Song
,
J.
, and
Gerard
,
R.
,
2018
, “
Metal Recovery During Melting of Extruded Machining Chips
,”
J. Clean. Prod.
,
200
, pp.
282
292
. 10.1016/j.jclepro.2018.07.246
101.
Boothroyd
,
G.
,
1996
, “Design for Manufacture and Assembly: The Boothroyd-Dewhurst Experience,”
Design for X
,
GQ
Huang
, ed.,
Springer-Science Business Media, B.V.
, pp.
19
40
.
102.
Wohlers
,
T.
, and
Associates
,
W.
,
2014
,
Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry: Annual Worldwide Progress Report
.
103.
Aviation
,
G. E.
,
2016
,
Additive Manufacturing
,
GE Aviation
.
104.
Ford
,
S.
, and
Despeisse
,
M.
,
2016
, “
Additive Manufacturing and Sustainability: An Exploratory Study of the Advantages and Challenges
,”
J. Clean. Prod.
,
137
, pp.
1573
1587
. 10.1016/j.jclepro.2016.04.150
105.
Becker
,
R.
,
Grzesiak
,
A.
, and
Henning
,
A.
,
2005
, “
Rethink Assembly Design
,”
Assem. Autom.
,
25
(
4
), pp.
262
266
. 10.1108/01445150510626370
106.
Yang
,
S.
,
Tang
,
Y.
, and
Zhao
,
Y. F.
,
2015
, “
A New Part Consolidation Method to Embrace the Design Freedom of Additive Manufacturing
,”
J. Manuf. Process.
,
20
, pp.
444
449
. 10.1016/j.jmapro.2015.06.024
107.
Yang
,
S.
,
Min
,
W.
,
Ghibaudo
,
J.
, and
Zhao
,
Y. F.
,
2019
, “
Understanding the Sustainability Potential of Part Consolidation Design Supported by Additive Manufacturing
,”
J. Clean. Prod.
,
232
, pp.
722
738
. 10.1016/j.jclepro.2019.05.380
108.
Schmelzle
,
J.
,
Kline
,
E. V.
,
Dickman
,
C. J.
,
Reutzel
,
E. W.
,
Jones
,
G.
, and
Simpson
,
T. W.
,
2015
, “
(Re)Designing for Part Consolidation: Understanding the Challenges of Metal Additive Manufacturing
,”
ASME J. Mech. Des.
,
137
(
11
), p.
111404
. 10.1115/1.4031156
109.
Gebler
,
M.
,
Schoot Uiterkamp
,
A. J. M.
, and
Visser
,
C.
,
2014
, “
A Global Sustainability Perspective on 3D Printing Technologies
,”
Energy Policy
,
74
, pp.
158
167
. 10.1016/j.enpol.2014.08.033
110.
Reeves
,
P.
,
2012
, “
Could Additive Manufacturing Contribute Towards Environmental Sustainability and Carbon Reduction Across the Supply Chain? Econolyst. Technology White Paper
,” http://www.econolyst.co.uk/index.php/home/resources/documents, Accessed May 20, 2010.
111.
Atzeni
,
E.
, and
Salmi
,
A.
,
1999
, “
Selective Laser Sintered Parts Used Directly in Spacecraft Production
,”
Rapid Prototyping Report 9(11)
.
112.
Hopkinson
,
N.
,
Hague
,
R. J. M.
, and
Dickens
,
P. M.
,
2006
,
Rapid Manufacturing: an Industrial Revolution for the Digital age
,
Wiley
,
New York
.
113.
Griffiths
,
A.
,
2002
, “
Rapid Manufacturing—The Next Industrial Revolution
,”
Mater. World
,
10
(
12
), pp.
34
35
.
114.
Atzeni
,
E.
, and
Salmi
,
A.
,
2012
, “
Economics of Additive Manufacturing for End-Usable Metal Parts
,”
Int. J. Adv. Manuf. Technol.
,
62
(
9–12
), pp.
1147
1155
. 10.1007/s00170-011-3878-1
115.
Conner
,
B. P.
,
Manogharan
,
G. P.
,
Martof
,
A. N.
,
Rodomsky
,
L. M.
,
Rodomsky
,
C. M.
,
Jordan
,
D. C.
, and
Limperos
,
J. W.
,
2014
, “
Making Sense of 3-D Printing: Creating a Map of Additive Manufacturing Products and Services
,”
Addit. Manuf.
,
1
, pp.
64
76
.
116.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
.10.1115/1.4028725
117.
Nagulpelli
,
K. S.
,
King
,
R. E.
, and
Warsing
,
D.
,
2019
, “
Integrated Traditional and Additive Manufacturing Production Profitability Model
,”
Procedia Manuf.
,
34
, pp.
619
630
. 10.1016/j.promfg.2019.06.121
118.
Attaran
,
M.
,
2017
, “
The Rise of 3-D Printing : The Advantages of Additive Manufacturing Over Traditional Manufacturing
,”
Bus. Horiz.
,
60
(
5
), pp.
677
688
. 10.1016/j.bushor.2017.05.011
119.
Liu
,
P.
,
Huang
,
S. H.
,
Mokasdar
,
A.
,
Zhou
,
H.
, and
Hou
,
L.
,
2014
, “
The Impact of Additive Manufacturing in the Aircraft Spare Parts Supply Chain: Supply Chain Operation Reference (Scor) Model Based Analysis
,”
Prod. Plan. Control
,
25
(
13–14
), pp.
1169
1181
. 10.1080/09537287.2013.808835
120.
Wits
,
W. W.
,
García
,
J. R. R.
, and
Becker
,
J. M. J.
,
2016
, “
How Additive Manufacturing Enables More Sustainable End-User Maintenance, Repair and Overhaul (MRO) Strategies
,”
Procedia CIRP
,
40
, pp.
693
698
. 10.1016/j.procir.2016.01.156
121.
Huang
,
R.
,
Riddle
,
M. E.
,
Graziano
,
D.
,
Das
,
S.
,
Nimbalkar
,
S.
,
Cresko
,
J.
, and
Masanet
,
E.
,
2017
, “
Environmental and Economic Implications of Distributed Additive Manufacturing: The Case of Injection Mold Tooling
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S130
S143
. 10.1111/jiec.12641
122.
Cooper
,
D. R.
, and
Allwood
,
J. M.
,
2012
, “
Reusing Steel and Aluminum Components at Product End of Life
,”
Environ. Sci. Technol.
,
46
(
18
), pp.
10334
10340
.
123.
Peng
,
S.
,
Li
,
T.
,
Wang
,
X.
,
Dong
,
M.
,
Liu
,
Z.
,
Shi
,
J.
, and
Zhang
,
H.
,
2017
, “
Toward a Sustainable Impeller Production: Environmental Impact Comparison of Different Impeller Manufacturing Methods: Environmental Comparison of Impeller Manufacturing
,”
J. Ind. Ecol.
,
21
(
S1
), pp.
S216
S229
.
124.
Zhu
,
Z.
,
Dhokia
,
V. G.
,
Nassehi
,
A.
, and
Newman
,
S. T.
,
2013
, “
A Review of Hybrid Manufacturing Processes—State of the Art and Future Perspectives
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
596
615
. 10.1080/0951192X.2012.749530
125.
Du
,
W.
,
Bai
,
Q.
, and
Zhang
,
B.
,
2016
, “
A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts
,”
Procedia Manuf.
,
5
, pp.
1018
1030
. 10.1016/j.promfg.2016.08.067
126.
Sealy
,
M. P.
,
Madireddy
,
G.
,
Williams
,
R. E.
,
Rao
,
P.
, and
Toursangsaraki
,
M.
,
2018
, “
Hybrid Processes in Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
060801
. 10.1115/1.4038644
127.
Yasa
,
E.
,
Deckers
,
J.
, and
Kruth
,
J. P.
,
2011
, “
The Investigation of the Influence of Laser Re-melting on Density, Surface Quality and Microstructure of Selective Laser Melting Parts
,”
Rapid Prototyp. J.
,
17
(
5
), pp.
312
327
. 10.1108/13552541111156450
128.
Yasa
,
E.
,
Kruth
,
J. P.
, and
Deckers
,
J.
,
2011
, “
Manufacturing by Combining Selective Laser Melting and Selective Laser Erosion/Laser Re-melting
,”
CIRP Annu.
,
20
(
1
), pp.
263
266
.
129.
Yasa
,
E.
, and
Kruth
,
J. P.
,
2011
, “
Application of Laser Re-melting on Selective Laser Melting Parts
,”
Adv. Prod. Eng. Manag.
,
6
(
4
), pp.
259
270
.
130.
Book
,
T. A.
, and
Sangid
,
M. D.
,
2016
, “
Evaluation of Select Surface Processing Techniques for In situ Application During the Additive Manufacturing Build Process
,”
JOM
,
68
(
7
), pp.
1780
1972
. 10.1007/s11837-016-1897-y
131.
Colegrove
,
P. A.
,
Donoghue
,
J.
,
Martina
,
F.
,
Gu
,
J.
,
Prangnell
,
P.
, and
Hönnige
,
J.
,
2017
, “
Application of Bulk Deformation Methods for Microstructural and Material Property Improvement and Residual Stress and Distortion Control in Additively Manufactured Components
,”
Scr. Mater.
,
135
, pp.
111
118
. 10.1016/j.scriptamat.2016.10.031
132.
Martina
,
F.
,
Roy
,
M. J.
,
Szost
,
B. A.
,
Terzi
,
S.
,
Colegrove
,
P. A.
,
Williams
,
S. W.
,
Withers
,
P. J.
,
Meyer
,
J.
, and
Hofmann
,
M.
,
2016
, “
Residual Stress of as Deposited and Rolled WireþArc Additive Manufacturing Ti–6Al–4V Components
,”
Mater. Sci. Technol.
,
32
(
14
), pp.
1439
1448
. 10.1080/02670836.2016.1142704
133.
Zhang
,
H. O.
,
Rui
,
D. M.
,
Xie
,
Y.
, and
Wang
,
G. L.
,
2013
, “
Study on Metamorphic Rolling Mechanism for Metal Hybrid Additive Manufacturing
,”
Solid Freeform Fabrication Symposium (SFF)
,
Austin, TX
,
Aug. 12–14
, pp.
188
189
.
134.
Zhang
,
H. O.
,
Xie
,
Y.
,
Rui
,
D. M.
, and
Wang
,
G. L.
,
2013
, “
Hybrid Deposition and Micro Rolling Manufacturing Method of Metallic Parts
,”
Solid Freeform Fabrication Symposium (SFF)
,
Austin, TX
,
Aug. 12–14
, pp.
267
281
.
You do not currently have access to this content.