Abstract

Metal syntactic foams are a novel grade of materials that find potential applications in the manufacture of lightweight structural components and biomedical applications. For these materials to be inducted into industrial applications, it becomes imperative to study their machining behavior. In this article, for the first time in the literature, machining characteristics of AZ91 magnesium foam reinforced with thin-walled hollow alumina ceramic microspheres being studied. Through cutting experiments, it is found that finer the size of hollow microspheres and higher their volume fraction, higher was the magnitude of cutting forces recorded. The failure mechanisms that constituted chip formation during cutting AZ91 foam has been explicated through a mechanistic cutting force model. The proposed force model takes into account key hollow alumina microsphere properties such as wall thickness-to-diameter ratio, average microsphere size, and volume fraction. The scanning electron microscopic (SEM) analysis showed two key modes of failure during cutting metallic foams. Microsphere bursts and fractures control matrix plastic deformation through an effective load transfer mechanism. The transverse matrix cracks, which are initiated as a result of induced shear stress, promote the propagation of longitudinal adhesive cracks. This rapid crack growth takes place along the direction of maximum energy release rate, thus weakening the interfacial strength and reducing effective load transfer. This leads to microsphere separation, and further matrix densification due to the collapse of microsphere cavities leads to chip separation. The developed mechanistic model was in better agreement with experimental results.

References

References
1.
Chen
,
Y.
,
Tekumalla
,
S.
,
Guo
,
Y. B.
, and
Gupta
,
M.
,
2016
, “
Introducing Mg-4Zn-3Gd-1Ca/ZnO Nanocomposite With Compressive Strengths Matching/Exceeding That of Mild Steel
,”
Sci. Rep.
,
6
(
1
), p.
32395
. 10.1038/srep32395
2.
Cochran
,
J. K.
,
Sanders
,
T. H.
,
Strbik
O. M.
, and
Wedding
,
C. A.
, III
,
2014
,
Metal Syntactic Foam
, US Patent No. 8,815,408 B1 Date of Patent: Aug. 26, 2014.
3.
Zhang
,
L. P.
, and
Zhao
,
Y. Y.
,
2007
, “
Mechanical Response of Al Matrix Syntactic Foams Produced by Pressure Infiltration Casting
,”
J. Compos. Mater.
,
41
(
17
), pp.
2105
2117
. 10.1177/0021998307074132
4.
Gupta
,
N.
, and
Rohatgi
,
P. K.
,
2014
,
Metal Matrix Syntactic Foams: Processing, Microstructure, Properties and Applications
,
DEStech Publications, Inc
,
Lancaster, PA
.
5.
Mitrović
,
S.
,
Babić
,
M.
,
Miloradović
,
N.
,
Bobić
,
I.
,
Stojanović
,
B.
,
Džunić
,
D.
, and
Pantić
,
M.
,
2014
, “
Wear Characteristics of Hybrid Composites Based on Za27 Alloy Reinforced With Silicon Carbide and Graphite Particles
,”
Tribol. Ind.
,
36
(
2
), pp.
204
210
.
6.
Mordike
,
B. L.
, and
Ebert
,
T.
,
2001
, “
Magnesium: Properties—Applications—Potential
,”
Mater. Sci. Eng.: A
,
302
(
1
), pp.
37
45
. 10.1016/S0921-5093(00)01351-4
7.
Xia
,
X.
,
Feng
,
J.
,
Ding
,
J.
,
Song
,
K.
,
Chen
,
X.
,
Zhao
,
W.
,
Liao
,
B.
, and
Hur
,
B.
,
2015
, “
Fabrication and Characterization of Closed-Cell Magnesium-Based Composite Foams
,”
Mater. Des.
,
74
, pp.
36
43
. 10.1016/j.matdes.2015.02.029
8.
Vaidya
,
A. R.
, and
Lewandowski
,
J. J.
,
1996
, “
Effects of SiCp Size and Volume Fraction on the High Cycle Fatigue Behavior of AZ91D Magnesium Alloy Composites
,”
Mater. Sci. Eng.: A
,
220
(
1–2
), pp.
85
92
. 10.1016/S0921-5093(96)10464-0
9.
Daoud
,
A.
,
Abouelkhair
,
M.
,
Abdel-Aziz
,
M.
, and
Rohatgi
,
P.
,
2007
, “
Fabrication, Microstructure and Compressive Behavior of ZC63 Mg–Microballoon Foam Composites
,”
Compos. Sci. Technol.
,
67
(9), pp.
1842
1853
. 10.1016/j.compscitech.2006.10.023
10.
Brothers
,
A. H.
,
Dunand
,
D. C.
,
Zheng
,
Q.
, and
Xu
,
J.
,
2007
, “
Amorphous Mg-Based Metal Foams With Ductile Hollow Spheres
,”
J. Appl. Phys.
,
102
(
2
), p.
23508
. 10.1063/1.2756043
11.
Gupta
,
N.
,
Luong
,
D.
, and
Cho
,
K.
,
2012
, “
Magnesium Matrix Composite Foams—Density
,”
Mech. Properties Appl. Met.
,
2
(
3
), pp.
238
252
. 10.3390/met2030238
12.
Luong
,
D. D.
,
Gupta
,
N.
, and
Rohatgi
,
P. K.
,
2011
, “
The High Strain Rate Compressive Response of Mg-Al Alloy/Fly Ash Cenosphere Composites
,”
JOM
,
63
, pp.
48
52
. 10.1007/s11837-011-0028-z
13.
Lin
,
Y.
,
Zhang
,
Q.
, and
Wu
,
G.
,
2016
, “
Interfacial Microstructure and Compressive Properties of Al–Mg Syntactic Foam Reinforced With Glass Cenospheres
,”
J. Alloys Compd.
,
655
, pp.
301
308
. 10.1016/j.jallcom.2015.09.175
14.
Bram
,
M.
,
Kempmann
,
C.
,
Laptev
,
A.
,
Stöver
,
D.
, and
Weinert
,
K.
,
2003
, “
Investigations on the Machining of Sintered Titanium Foams Utilizing Face Milling and Peripheral Grinding
,”
Adv. Eng. Mater.
,
5
(
6
), pp.
441
447
. 10.1002/adem.200300356
15.
Qiao
,
H.
,
Murthy
,
T. G.
, and
Saldana
,
C.
,
2019
, “
Structure and Deformation of Gradient Metal Foams Produced by Machining
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), p.
7
. 10.1115/msec2019-2980
16.
Abolghasemi Fakhri
,
M.
,
Bordatchev
,
E. V.
, and
Tutunea-Fatan
,
O. R.
,
2013
, “
Framework for Evaluation of the Relative Contribution of the Process on Porosity–Cutting Force Dependence in Micromilling of Titanium Foams
,”
Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf.
,
227
(
11
), pp.
1635
1650
. 10.1177/0954405413491243
17.
Heidari
,
M.
, and
Yan
,
J.
,
2018
, “
Material Removal Mechanism and Surface Integrity in Ultraprecision Cutting of Porous Titanium
,”
Precis. Eng.
,
52
, pp.
356
369
. 10.1016/j.precisioneng.2018.01.014
18.
Heidari
,
M.
, and
Yan
,
J.
,
2017
, “
Fundamental Characteristics of Material Removal and Surface Formation in Diamond Turning of Porous Carbon
,”
Int. J. Addit. Subtractive Mater. Manuf.
,
1
(
1
), pp.
23
41
. 10.1504/ijasmm.2017.082965
19.
Qiao
,
H.
,
Basu
,
S.
,
Saldana
,
C.
, and
Kumara
,
S.
,
2017
, “
Subsurface Damage in Milling of Lightweight Open-Cell Aluminium Foams
,”
CIRP Ann.
,
66
(
1
), pp.
125
128
. 10.1016/j.cirp.2017.04.033
20.
Qiao
,
H.
,
Basu
,
S.
, and
Saldana
,
C.
,
2016
, “
Quantitative x-Ray Analysis: Applications in Machining of Porous Metallic Foams
,”
Proc. CIRP
,
45
, pp.
335
338
. 10.1016/j.procir.2016.03.019
21.
Guerra Silva
,
R.
,
Teicher
,
U.
,
Nestler
,
A.
, and
Brosius
,
A.
,
2015
, “
Finite Element Modeling of Chip Separation in Machining Cellular Metals
,”
Adv. Manuf.
,
3
(
1
), pp.
54
62
. 10.1007/s40436-015-0099-0
22.
Tutunea-Fatan
,
O. R.
,
Fakhri
,
M. A.
, and
Bordatchev
,
E. V.
,
2011
, “
Porosity and Cutting Forces: From Macroscale to Microscale Machining Correlations
,”
Proc. Inst. Mech. Eng. B
,
225
(
5
), pp.
619
630
. 10.1177/2041297510394057
23.
Guerra Silva
,
R.
,
Teicher
,
U.
,
Brosius
,
A.
, and
Ihlenfeldt
,
S.
,
2020
, “
2D Finite Element Modeling of the Cutting Force in Peripheral Milling of Cellular Metals
,”
Materials
,
13
(
3
), p.
555
. 10.3390/ma13030555
24.
Balch
,
D. K.
,
O’Dwyer
,
J. G.
,
Davis
,
G. R.
,
Cady
,
C. M.
,
Gray
,
G. T.
, and
Dunand
,
D. C.
,
2005
, “
Plasticity and Damage in Aluminum Syntactic Foams Deformed Under Dynamic and Quasi-Static Conditions
,”
Mater. Sci. Eng.: A
,
391
(
1–2
), pp.
408
417
. 10.1016/j.msea.2004.09.012
25.
Banhart
,
J.
,
2001
, “
Manufacture, Characterization and Application of Cellular Metals and Metal Foams
,”
Prog. Mater. Sci.
,
46
(
6
), pp.
559
U3
. 10.1016/S0079-6425(00)00002-5
26.
Ferguson
,
J. B.
,
Santa Maria
,
J. A.
,
Schultz
,
B. F.
, and
Rohatgi
,
P. K.
,
2013
, “
Al–Al2O3 Syntactic Foams—Part II: Predicting Mechanical Properties of Metal Matrix Syntactic Foams Reinforced With Ceramic Spheres
,”
Mater. Sci. Eng.: A
,
582
(
6
), pp.
423
432
. 10.1016/j.msea.2013.06.065
27.
Uju
,
W.
, and
Oguocha
,
I.
,
2012
, “
A Study of Thermal Expansion of Al–Mg Alloy Composites Containing Fly Ash
,”
Mater. Des.
,
33
, pp.
503
509
. 10.1016/j.matdes.2011.04.056
28.
Kiser
,
M.
,
He
,
M. Y.
, and
Zok
,
F. W.
,
1999
, “
The Mechanical Response of Ceramic Microballoon Reinforced Aluminum Matrix Composites Under Compressive Loading
,”
Acta Mater.
,
47
(
9
), pp.
2685
2694
. 10.1016/S1359-6454(99)00129-9
29.
Johnson
,
G. R.
, and
Cook
,
W. H.
,
1983
, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Present Seventh International Symposium Ballist Hague
,
The Hague, Netherlands
,
Apr. 19–21
, pp.
541
547
.
30.
Dabade
,
U. A.
,
Dapkekar
,
D.
, and
Joshi
,
S. S.
,
2009
, “
Modeling of Chip–Tool Interface Friction to Predict Cutting Forces in Machining of Al/SiCp Composites
,”
Int. J. Mach. Tools Manuf.
,
49
(
9
), pp.
690
700
. 10.1016/j.ijmachtools.2009.03.003
31.
Astakhov
,
V.
, and
Xiao
,
X.
,
2008
, “
A Methodology for Practical Cutting Force Evaluation Based on the Energy Spent in the Cutting System
,”
Mach. Sci. Technol.
,
12
(
3
), pp.
325
347
. 10.1080/10910340802306017
32.
Kannan
,
S.
, and
Kishawy
,
H. A.
,
2008
, “
Tribological Aspects of Machining Aluminium Metal Matrix Composites
,”
J. Mater. Process. Technol.
,
198
(
1–3
), pp.
399
406
. 10.1016/j.jmatprotec.2007.07.021
33.
Ghandehariun
,
A.
,
Kishawy
,
H.
, and
Balazinski
,
M.
,
2016
, “
On Machining Modeling of Metal Matrix Composites: A Novel Comprehensive Constitutive Equation
,”
Int. J. Mech. Sci.
,
107
(
1–3
), pp.
235
241
. 10.1016/j.ijmecsci.2016.01.020
34.
Astakhov
,
V. P.
, and
Shvets
,
S.
,
2004
, “
The Assessment of Plastic Deformation in Metal Cutting
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
193
202
. 10.1016/j.jmatprotec.2003.10.015
35.
Sikder
,
S.
, and
Kishawy
,
H. A.
,
2012
, “
Analytical Model for Force Prediction When Machining Metal Matrix Composite
,”
Int. J. Mech. Sci.
,
59
(
1
), pp.
95
103
. 10.1016/j.ijmecsci.2012.03.010
36.
Waldorf
,
D. J.
,
2006
, “
A Simplified Model for Ploughing Forces in Turning
,”
J. Manuf. Process.
,
8
(
2
), pp.
76
82
. 10.1016/S1526-6125(07)00005-9
37.
Kishawy
,
H. A.
,
Kannan
,
S.
, and
Balazinski
,
M.
,
2004
, “
An Energy Based Analytical Force Model for Orthogonal Cutting of Metal Matrix Composites
,”
CIRP Ann.
,
53
(
1
), pp.
91
94
. 10.1016/S0007-8506(07)60652-0
You do not currently have access to this content.