Abstract

In a flexible roll-forming process, a metal blank is incrementally deformed into the desired shape with a variable cross-sectional profile by passing the blank through a series of forming rolls. Because of the combined effects of process and material parameters on the quality of the roll-formed product, the approaches used to optimize the roll-forming process have been largely based on experience and trial-and-error methods. Web warping is one of the major shape defects encountered in flexible roll forming. In this study, an optimization method was developed using support vector regression (SVR) and a genetic algorithm (GA) to reduce web warping in flexible roll forming. An SVR model was developed to predict the web-warping height, and a response surface method was used to investigate the effect of the process parameters. In the development of these predictive models, three process parameters—the forming-roll speed condition, leveling-roll height, and bend angle—were considered as the model inputs, and the web-warping height was used as the response variable. The GA used the web-warping height and the cost of the roll-forming system as the fitness function to optimize the process parameters of the flexible roll-forming process. When the flexible roll-forming process was carried out using the optimized process parameters, the obtained experimental results indicated a reduction in web warping. Hence, the feasibility of the proposed optimization method was confirmed.

References

References
1.
Esposito
,
L.
,
Bertocco
,
A.
,
Sepe
,
R.
, and
Armentani
,
E.
,
2018
, “
3D Strip Model for Continuous Roll-Forming Process Simulation
,”
Procedia Struct. Integrity
,
12
, pp.
370
379
. 10.1016/j.prostr.2018.11.080
2.
Ghorbel
,
O.
,
Mars
,
J.
,
Koubaa
,
S.
,
Wali
,
M.
, and
Dammak
,
F.
,
2019
, “
Coupled Anisotropic Plasticity-Ductile Damage: Modeling, Experimental Verification, and Application to Sheet Metal Forming Simulation
,”
Int. J. Mech. Sci.
,
150
, pp.
548
560
.
3.
Kim
,
J. H.
,
Woo
,
Y. Y.
,
Hwang
,
T. W.
,
Han
,
S. W.
, and
Moon
,
Y. H.
,
2016
, “
Effect of Loading Pattern on Longitudinal Bowing in Flexible Roll Forming
,”
J. Mech. Sci. Technol.
,
30
(
12
), pp.
5633
5639
. 10.1007/s12206-016-1132-3
4.
Wang
,
M.
,
Lu
,
G. L.
,
Cai
,
Z. Y.
, and
Li
,
M. Z.
,
2018
, “
Research on Continuous Roll Forming for Manufacturing 3D Curved Surface Parts With Variable Transverse Curvatures
,”
J. Manuf. Processes.
,
36
, pp.
459
464
. 10.1016/j.jmapro.2018.10.034
5.
Jang
,
J. H.
,
Lee
,
J. H.
,
Joo
,
B. D.
, and
Moon
,
Y. H.
,
2009
, “
Flow Characteristics of Aluminum Coated Boron Steel in hot Press Forming
,”
T. Nonferr. Metal. Soc.
,
19
(
4
), pp.
913
916
. 10.1016/S1003-6326(08)60376-3
6.
Sedlmaier
,
A.
, and
Dietl
,
T.
,
2018
, “
3D Roll Forming Center for Automotive Applications
,”
Procedia Manuf.
,
15
, pp.
767
774
. 10.1016/j.promfg.2018.07.319
7.
Kang
,
B. H.
,
Lee
,
M. Y.
,
Shon
,
S. M.
, and
Moon
,
Y. H.
,
2007
, “
Forming Various Shapes of Tubular Bellows Using a Single-Step Hydroforming Process
,”
J. Mater. Process. Technol.
,
194
(
1–3
), pp.
1
6
. 10.1016/j.jmatprotec.2007.02.029
8.
Groche
,
P.
,
von Breitenbach
,
G.
,
Jockel
,
M.
, and
Zettler
,
A.
,
2003
, “
New Tooling Concepts for Future Roll Forming
,”
4th International Conference on Industrial Tools
, pp.
121
126
.
9.
Ona
,
H.
,
2005
, “
Study on Development of Intelligent Roll Forming Machine
,”
The 8th International Conference on Technology of Plasticity
, pp.
503
504
.
10.
Halmos
,
G.
,
2005
,
Roll Forming Handbook
,
CRC Press
,
Boca Raton, FL
.
11.
Yi
,
H. K.
,
Kim
,
D. W.
,
Van Tyne
,
C. J.
, and
Moon
,
Y. H.
,
2008
, “
Analytical Prediction of Springback Based on Residual Differential Strain During Sheet Metal Bending
,”
Proc. Inst. Mech. Eng. C. J. Mech. Eng. Sci.
,
222
(
2
), pp.
117
129
. 10.1243/09544062JMES682
12.
Traub
,
T.
,
Chen
,
X.
, and
Groche
,
P.
,
2017
, “
Experimental and Numerical Investigation of the Bending Zone in Roll Forming
,”
Int. J. Mech. Sci.
,
131
, pp.
956
970
. 10.1016/j.ijmecsci.2017.07.056
13.
Moon
,
Y. H.
,
Kim
,
D. W.
, and
Van Tyne
,
C. J.
,
2008
, “
Analytical Model for Prediction of Sidewall Curl During Stretch-Bend Sheet Metal Forming
,”
Int. J. Mech. Sci.
,
50
(
4
), pp.
666
675
. 10.1016/j.ijmecsci.2008.01.003
14.
Park
,
J. C.
,
Yang
,
D. Y.
,
Cha
,
M. H.
,
Kim
,
D. G.
, and
Nam
,
J. B.
,
2014
, “
Investigation of a new Incremental Counter Forming in Flexible Roll Forming to Manufacture Accurate Profiles With Variable Cross-Sections
,”
Int. J. Mach. Tools. Manuf.
,
86
, pp.
68
80
. 10.1016/j.ijmachtools.2014.07.001
15.
Rezaei
,
R.
,
Naeini
,
H. M.
,
Tafti
,
R. A.
,
Kasaei
,
M. M.
,
Mohammadi
,
M.
, and
Abbaszadeh
,
B.
,
2017
, “
Effect of Bend Curve on web Warping in Flexible Roll Formed Profiles
,”
Int. J. Adv. Manuf. Technol.
,
93
(
9–12
), pp.
3625
3636
. 10.1007/s00170-017-0784-1
16.
Jiao
,
J.
,
Rolfe
,
B.
,
Mendiguren
,
J.
, and
Weiss
,
M.
,
2015
, “
An Analytical Approach to Predict web-Warping and Longitudinal Strain in Flexible Roll Formed Sections of Variable Width
,”
Int. J. Mech. Sci.
,
90
, pp.
228
238
. 10.1016/j.ijmecsci.2014.11.010
17.
Jiao
,
J.
,
Rolfe
,
B.
,
Mendiguren
,
J.
, and
Weiss
,
M.
,
2016
, “
An Analytical Model for web-Warping in Variable Width Flexible Roll Forming
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1541
1555
. 10.1007/s00170-015-8191-y
18.
Lindgren
,
M.
,
2007
, “
An Improved Model for the Longitudinal Peak Strain in the Flange of a Roll Formed U-Channel Developed by FE-Analyses
,”
Steel. Res. Int.
,
78
(
1
), pp.
82
87
. 10.1002/srin.200705863
19.
Bidabadi
,
B. S.
,
Naeini
,
H. M.
,
Tehrani
,
M. S.
, and
Barghikar
,
H.
,
2016
, “
Experimental and Numerical Study of Bowing Defects in Cold Roll-Formed U-Channel Sections
,”
J. Constr. Steel. Res.
,
118
, pp.
243
253
. 10.1016/j.jcsr.2015.11.007
20.
Woo
,
Y. Y.
,
Han
,
S. W.
,
Hwang
,
T. W.
,
Park
,
J. Y.
, and
Moon
,
Y. H.
,
2018
, “
Characterization of the Longitudinal bow During Flexible Roll Forming of Steel Sheets
,”
J. Mater. Process. Technol.
,
252
, pp.
782
794
. 10.1016/j.jmatprotec.2017.10.048
21.
Woo
,
Y. Y.
,
Han
,
S. W.
,
Oh
,
I. Y.
, and
Moon
,
Y. H.
,
2019
, “
Shape Defects in the Flexible Roll Forming of Automotive Parts
,”
Int. J. Automot. Technol.
,
20
(
2
), pp.
227
236
. 10.1007/s12239-019-0022-y
22.
Woo
,
Y. Y.
,
Oh
,
I. Y.
,
Hwang
,
T. W.
, and
Moon
,
Y. H.
,
2019
, “
Analysis of Shape Defects During Flexible Roll Forming of Steel/Aluminum Double-Layered Blanks
,”
Int. J. Mater. Form.
,
13
(
6
), pp.
861
872
.
23.
Zeng
,
G.
,
Li
,
S. H.
,
Yu
,
Z. Q.
, and
Lai
,
X. M.
,
2009
, “
Optimization Design of Roll Profiles for Cold Roll Forming Based on Response Surface Method
,”
Mater. Des.
,
30
(
6
), pp.
1930
1938
. 10.1016/j.matdes.2008.09.018
24.
Wiebenga
,
J. H.
,
Weiss
,
M.
,
Rolfe
,
B.
, and
van den Boogaard
,
A. H.
,
2013
, “
Product Defect Compensation by Robust Optimization of a Cold Roll Forming Process
,”
J. Mater. Process. Technol.
,
213
(
6
), pp.
978
986
. 10.1016/j.jmatprotec.2013.01.006
25.
Alpaydin
,
E.
,
2020
,
Introduction to Machine Learning
,
MIT Press
,
Cambridge
.
26.
Hackeling
,
G.
,
2017
,
Mastering Machine Learning With Scikit-Learn
,
Packt Publishing Ltd
,
Birmingham
.
27.
Hastie
,
T.
,
Tibshirani
,
R.
, and
Friedman
,
J.
,
2009
,
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
,
Springer Science & Business Media
,
Berlin
.
28.
Jordan
,
M. I.
, and
Mitchell
,
T. M.
,
2015
, “
Machine Learning: Trends, Perspectives, and Prospects
,”
Science
,
349
(
6245
), pp.
255
260
. 10.1126/science.aaa8415
29.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K. D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
.
30.
Weichert
,
D.
,
Link
,
P.
,
Stoll
,
A.
,
Rüping
,
S.
,
Ihlenfeldt
,
S.
, and
Wrobel
,
S.
,
2019
, “
A Review of Machine Learning for the Optimization of Production Processes
,”
Int. J. Adv. Manuf. Technol.
,
104
(
5–8
), pp.
1889
1902
. 10.1007/s00170-019-03988-5
31.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
. 10.1115/1.4036350
32.
Li
,
Z.
,
Wu
,
D.
, and
Yu
,
T.
,
2019
, “
Prediction of Material Removal Rate for Chemical Mechanical Planarization Using Decision Tree-Based Ensemble Learning
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031003
. 10.1115/1.4042051
33.
Kumar
,
K. A.
,
Ratnam
,
C.
,
Rao
,
K. V.
, and
Murthy
,
B. S. N.
,
2019
, “
Experimental Studies of Machining Parameters on Surface Roughness, Flank Wear, Cutting Forces and Work Piece Vibration in Boring of AISI 4340 Steels: Modelling and Optimization Approach
,”
SN Appl. Sci.
,
1
(
1
), p.
26
. 10.1007/s42452-018-0026-7
34.
Li
,
S.
,
Fang
,
H.
, and
Liu
,
X.
,
2018
, “
Parameter Optimization of Support Vector Regression Based on Sine Cosine Algorithm
,”
Expert Syst. Appl.
,
91
, pp.
63
77
. 10.1016/j.eswa.2017.08.038
35.
Yu
,
Y.
,
Wu
,
D.
,
Wang
,
Q.
,
Chen
,
X.
, and
Gao
,
W.
,
2019
, “
Machine Learning Aided Durability and Safety Analyses on Cementitious Composites and Structures
,”
Int. J. Mech. Sci.
,
160
, pp.
165
181
. 10.1016/j.ijmecsci.2019.06.040
36.
Yusup
,
N.
,
Zain
,
A. M.
, and
Hashim
,
S. Z. M.
,
2012
, “
Evolutionary Techniques in Optimizing Machining Parameters: Review and Recent Applications (2007–2011)
,”
Expert. Syst. Appl.
,
39
(
10
), pp.
9909
9927
. 10.1016/j.eswa.2012.02.109
37.
Zain
,
A. M.
,
Haron
,
H.
, and
Sharif
,
S.
,
2008
, “
An Overview of GA Technique for Surface Roughness Optimization in Milling Process
,”
2008 International Symposium on Information Technology
, 4, pp.
1
6
.
38.
Lela
,
B.
,
Bajić
,
D.
, and
Jozić
,
S.
,
2009
, “
Regression Analysis, Support Vector Machines, and Bayesian Neural Network Approaches to Modeling Surface Roughness in Face Milling
,”
Int. J. Adv. Manuf. Technol.
,
42
(
11–12
), pp.
1082
1088
. 10.1007/s00170-008-1678-z
39.
Gupta
,
A. K.
,
2010
, “
Predictive Modelling of Turning Operations Using Response Surface Methodology, Artificial Neural Networks and Support Vector Regression
,”
Int. J. Prod. Res.
,
48
(
3
), pp.
763
778
. 10.1080/00207540802452132
40.
Asiltürk
,
İ
,
2012
, “
Predicting Surface Roughness of Hardened AISI 1040 Based on Cutting Parameters Using Neural Networks and Multiple Regression
,”
Int. J. Adv. Manuf. Tech.
,
63
(
1–4
), pp.
249
257
. 10.1007/s00170-012-3903-z
41.
Rong
,
Y.
,
Zhang
,
G.
,
Chang
,
Y.
, and
Huang
,
Y.
,
2016
, “
Integrated Optimization Model of Laser Brazing by Extreme Learning Machine and Genetic Algorithm
,”
Int. J. Adv. Manuf. Tech.
,
87
(
9–12
), pp.
2943
2950
. 10.1007/s00170-016-8649-6
42.
Sun
,
A.
,
Jin
,
X.
, and
Chang
,
Y.
,
2017
, “
Research on the Process Optimization Model of Micro-Clearance Electrolysis-Assisted Laser Machining Based on BP Neural Network and ant Colony
,”
Int. J. Adv. Manuf. Tech.
,
88
(
9–12
), pp.
3485
3498
. 10.1007/s00170-016-8974-9
43.
Xu
,
G.
, and
Yang
,
Z.
,
2015
, “
Multiobjective Optimization of Process Parameters for Plastic Injection Molding via Soft Computing and Grey Correlation Analysis
,”
Int. J. Adv. Manuf. Tech.
,
78
(
1–4
), pp.
525
536
. 10.1007/s00170-014-6643-4
44.
Kurra
,
S.
,
Rahman
,
N. H.
,
Regalla
,
S. P.
, and
Gupta
,
A. K.
,
2015
, “
Modeling and Optimization of Surface Roughness in Single Point Incremental Forming Process
,”
J. Mater. Res. Technol.
,
4
(
3
), pp.
304
313
. 10.1016/j.jmrt.2015.01.003
45.
Lahiri
,
S. K.
, and
Khalfe
,
N.
,
2009
, “
Process Modeling and Optimization of Industrial Ethylene Oxide Reactor by Integrating Support Vector Regression and Genetic Algorithm
,”
Can. J. Chem. Eng.
,
87
(
1
), pp.
118
128
. 10.1002/cjce.20123
46.
Dadgar Asl
,
Y.
,
Woo
,
Y. Y.
,
Kim
,
Y.
, and
Moon
,
Y. H.
,
2020
, “
Non-Sorting Multi-Objective Optimization of Flexible Roll Forming Using Artificial Neural Networks
,”
Int. J. Adv. Manuf. Tech.
,
107
, pp.
2875
2888
.
47.
Groche
,
P.
,
Zettler
,
A.
,
Berner
,
S.
, and
Schneider
,
G.
,
2011
, “
Development and Verification of a one-Step-Model for the Design of Flexible Roll Formed Parts
,”
Int. J. Mater. Form.
,
4
(
4
), pp.
371
377
. 10.1007/s12289-010-0998-3
48.
Ona
,
H.
,
Shou
,
I.
, and
Hoshi
,
K.
,
2012
, “
On Strain Distributions in the Formation of Flexible Channel Section Development of Flexible Cold Roll Forming Machine
,”
Adv. Mater. Res.
,
576
, pp.
137
140
. 10.4028/www.scientific.net/AMR.576.137
49.
Awad
,
M.
, and
Khanna
,
R.
,
2015
,
Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
,
Apress
,
Berkeley, CA
.
50.
Gupta
,
A. K.
,
Guntuku
,
S. C.
,
Desu
,
R. K.
, and
Balu
,
A.
,
2015
, “
Optimisation of Turning Parameters by Integrating Genetic Algorithm with Support Vector Regression and Artificial Neural Networks
,”
Int. J. Adv. Manuf. Technol.
,
77
(
1–4
), pp.
331
339
. 10.1007/s00170-014-6282-9
51.
Vapnik
,
V. N.
,
1999
, “
An Overview of Statistical Learning Theory
,”
IEEE Trans. Neural Netw.
,
10
(
5
), pp.
988
999
. 10.1109/72.788640
52.
Wu
,
C. H.
,
Ho
,
J. M.
, and
Lee
,
D. T.
,
2004
, “
Travel-time Prediction with Support Vector Regression
,”
IEEE Trans. Intell. Transp. Syst.
,
5
(
4
), pp.
276
281
. 10.1109/TITS.2004.837813
53.
Box
,
G. E.
, and
Wilson
,
K. B.
,
1951
, “
On the Experimental Attainment of Optimum Conditions
,”
J. R. Stat. Soc. B.
,
13
(
1
), pp.
1
45
.
54.
Holland
,
J.
,
1975
,
Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence
,
U Michigan Press
,
Ann arbor, MI
.
55.
Jamieson
,
P. D.
,
Porter
,
J. R.
, and
Wilson
,
D. R.
,
1991
, “
A Test of the Computer Simulation Model ARCWHEAT1 on Wheat Crops Grown in New Zealand
,”
Field. Crops. Res.
,
27
(
4
), pp.
337
350
. 10.1016/0378-4290(91)90040-3
56.
Heinemann
,
A. B.
,
Van Oort
,
P. A.
,
Fernandes
,
D. S.
, and
Maia
,
A. D. H. N.
,
2012
, “
Sensitivity of APSIM/ORYZA Model due to Estimation Errors in Solar Radiation
,”
Bragantia
,
71
(
4
), pp.
572
582
. 10.1590/S0006-87052012000400016
57.
Safdarian
,
R.
, and
Naeini
,
H. M.
,
2015
, “
The Effects of Forming Parameters on the Cold Roll Forming of Channel Section
,”
Thin-Walled Struct.
,
92
, pp.
130
136
. 10.1016/j.tws.2015.03.002
You do not currently have access to this content.