Abstract

Grain refinement and the avoidance of columnar solidification is a great challenge in the deep penetration laser welds of thick-section steels. Further knowledge about the heat distribution and the temperature gradients in laser welds is vital for future attempts on the grain refinement of such welds. In this study, a comparative investigation was carried out for full and partial penetration hybrid laser welding of structural steel. The transient temperature distribution and temperature gradients were calculated for the experiments using a simplified three-dimensional finite element analysis. A comparative analysis was presented to investigate the influence of penetration mode on the temperature gradient in the liquid at different weld depths. The results of the numerical analysis suggested that, for given welding process parameters, full penetration welds have lower temperature gradients at the solidification front, meaning that they potentially have a higher chance of grain refinement, compared with partial penetration welds.

References

References
1.
Lippold
,
J. C.
,
2015
,
Welding Metallurgy and Weldability
,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
2.
Porter
,
D. A.
,
Easterling
,
K. E.
, and
Sherif
,
M. Y.
,
2009
,
Phase Transformations in Metals and Alloys
, 3rd ed.,
CRC Press
,
Boca Raton, FL
.
3.
Wei
,
H. L.
,
Elmer
,
J. W.
, and
DebRoy
,
T.
,
2017
, “
Crystal Growth During Keyhole Mode Laser Welding
,”
Acta Mater.
,
133
, pp.
10
20
. 10.1016/j.actamat.2017.04.074
4.
Akselsen
,
O. M.
,
Wiklund
,
G.
,
Ostby
,
E.
,
Sorgjard
,
A.
, and
Kaplan
,
A.
,
2013
, “
A First Assessment of Laser Hybrid Welding of 420 mpa Steel for Offshore Structure Application
,”
14th Nordic Laser Materials Processing Conference Nolamp
,
A. F. H.
Kaplan
, and
H.
Engstrom
, eds.,
Gothenburg, Sweden
,
Aug. 26–28
, pp.
171
182
.
5.
Farrokhi
,
F.
,
Nielsen
,
S. E.
,
Schmidt
,
R. H.
,
Pedersen
,
S. S.
, and
Kristiansen
,
M.
,
2015
, “
Effect of Cut Quality on Hybrid Laser Arc Welding of Thick Section Steels
,”
Phys. Procedia
,
78
, pp.
65
73
. 10.1016/j.phpro.2015.11.018
6.
Kou
,
S.
,
2003
,
Welding Metallurgy
, 2nd ed.,
John Wiley & Sons, Inc.
,
Hoboken, NJ
.
7.
Gebhardt
,
M. O.
,
Gumenyuk
,
A.
, and
Rethmeier
,
M.
,
2013
, “
Numerical Analysis of Hot Cracking in Laser-Hybrid Welded Tubes
,”
AMSE
,
2013
, pp.
1
8
. 10.1155/2013/520786
8.
Farrokhi
,
F.
,
Larsen
,
R. M.
, and
Kristiansen
,
M.
,
2017
, “
Single-Pass Hybrid Laser Welding of 25mm Thick Steel
,”
Phys. Procedia
,
89
, pp.
49
57
. 10.1016/j.phpro.2017.08.019
9.
Wahba
,
M.
,
Mizutani
,
M.
, and
Katayama
,
S.
,
2016
, “
Single Pass Hybrid Laser-Arc Welding of 25mm Thick Square Groove Butt Joints
,”
Mater. Des.
,
97
, pp.
1
6
. 10.1016/j.matdes.2016.02.041
10.
Arata
,
Y.
,
Matsuda
,
F.
, and
Matsui
,
A.
,
1974
, “
Effect of Welding Condition on Solidification Structure in Weld Metal of Aluminum Alloy Sheets
,”
Trans. JWRI
,
3
(
1
), pp.
89
97
.
11.
Rutter
,
J.
, and
Chalmers
,
B.
,
1953
, “
A Prismatic Substructure Formed During Solidification of Metals
,”
Can. J. Phys.
,
31
(
1
), pp.
15
39
. 10.1139/p53-003
12.
Farrokhi
,
F.
,
Endelt
,
B.
, and
Kristiansen
,
M.
,
2019
, “
A Numerical Model for Full and Partial Penetration Hybrid Laser Welding of Thick-Section Steels
,”
Opt. Laser Technol.
,
111
, pp.
671
686
. 10.1016/j.optlastec.2018.08.059
13.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
. 10.1007/BF02667333
14.
Wu
,
C.
,
Wang
,
H. G.
, and
Zhang
,
Y. M.
,
2006
, “
A New Heat Source Model for Keyhole Plasma Arc Welding in FEM Analysis of the Temperature Profile
,”
Welding J.
,
85
(
12
), pp.
284
291
.
15.
Liu
,
L.
,
2009
, “Hybrid Welding of Magnesium Alloys,”
Hybrid Laser-Arc Welding
,
F. O.
Olsen
, ed.,
Woodhead Publishing Limited
,
Cambridge, UK
, pp.
143
177
.
16.
Wu
,
C. S.
,
Hu
,
Q. X.
, and
Gao
,
J. Q.
,
2009
, “
An Adaptive Heat Source Model for Finite-Element Analysis of Keyhole Plasma Arc Welding
,”
Comput. Mater. Sci.
,
46
(
1
), pp.
167
172
. 10.1016/j.commatsci.2009.02.018
17.
Jeberg
,
P. V.
,
2005
,
Automatic Process Optimized Weld Planning of Full Penetration I-joint GMA Welding
,
Ph.D. thesis
,
Aalborg University (AAU)
,
Aalborg
.
18.
Birk-Sørensen
,
M.
,
1999
,
Simulation of Welding Distortions in Ship Section
,
Ph.D. thesis
,
Technical University of Denmark (DTU)
,
Copenhagen
.
19.
Deng
,
D.
,
2009
, “
FEM Prediction of Welding Residual Stress and Distortion in Carbon Steel Considering Phase Transformation Effects
,”
Mater. Des.
,
30
(
2
), pp.
359
366
. 10.1016/j.matdes.2008.04.052
20.
Bhatti
,
A. A.
,
Barsoum
,
Z.
,
Murakawa
,
H.
, and
Barsoum
,
I.
,
2015
, “
Influence of Thermo-Mechanical Material Properties of Different Steel Grades on Welding Residual Stresses and Angular Distortion
,”
Mater. Des.
,
65
, pp.
878
889
. 10.1016/j.matdes.2014.10.019
21.
Nguyen
,
N.
,
Ohta
,
A.
,
Matsuoka
,
K.
,
Suzuki
,
N.
, and
Maeda
,
Y.
,
1999
, “
Analytical Solutions for Transient Temperature of Semi-Infinite Body Subjected to 3-D Moving Heat Sources
”. Welding Research Supplement, (August), pp.
265
274
.
22.
Moeslund
,
T. B.
,
2012
,
Introduction to Video and Image Processing: Building Real Systems and Applications
,
Springer-Verlag
,
Berlin
.
23.
Haug
,
P.
,
Rominger
,
V.
,
Speker
,
N.
,
Weber
,
R.
,
Graf
,
T.
,
Weigl
,
M.
, and
Schmidt
,
M.
,
2013
, “
Influence of Laser Wavelength on Melt Bath Dynamics and Resulting Seam Quality at Welding of Thick Plates
,”
Phys. Procedia
,
41
, pp.
49
58
.
24.
Zhang
,
L.
,
Zhang
,
J.
,
Gumenyuk
,
A.
,
Rethmeier
,
M.
, and
Na
,
S.
,
2014
, “
Numerical Simulation of Full Penetration Laser Welding of Thick Steel Plate With High Power High Brightness Laser
,”
J. Mater. Process. Technol.
,
214
(
8
), pp.
1710
1720
.
25.
Tan
,
W.
, and
Shin
,
Y. C.
,
2015
, “
Multi-scale Modeling of Solidification and Microstructure Devel-Opment in Laser Keyhole Welding Process for Austenitic Stainless Steel
,”
Comput. Mater. Sci.
,
98
, pp.
446
458
.
You do not currently have access to this content.