Abstract

Laser beam machining (LBM) is a versatile process that can shape a wide range of engineering materials such as metals, ceramics, polymers, and composite materials. However, machining of glass materials by LBM is a challenge as most of the laser energy is not absorbed by the surface. In this study, an attempt has been made to increase the absorptivity of the glass material by using a coating on the surface of the material. Glass has been used in this study because of its extensive applications in the micro-opto-electro-mechanical systems. The optimal machining depends on both laser parameters and properties of the workpiece material. There are number of laser parameters that can be varied in the laser machining process. It is difficult to find optimal laser parameters due to the mutual interaction of laser parameters. A statistical study based on design of experiment (DoE) has been made to study the effect of coating and parameters like laser power, laser scanning speed, angle of inclination of the workpiece on depth of the slot, width of the slot, aspect ratio, and material removal rate (MRR) in the laser machining process using 2k factorial design and analysis of variance (ANOVA). On an average, four times increase in depth of the slot, two times increase in width of the slot and seven times increase in the MRR were observed in the glass samples with coating when compared to uncoated glass work samples.

References

References
1.
Tan
,
H.
, and
Duan
,
J. A.
,
2017
, “
One-step Femtosecond Laser Welding and Internal Machining of Three Glass Substrates
,”
Appl. Phys. A
,
123
(
5
), p.
1
. 10.1007/s00339-017-0996-0
2.
Li
,
C.
, and
Nikumb
,
S.
,
2003
, “
Ultra-fine Surface Machining of Glass Using Laser-Produced Charged Particles
,”
Appl. Surf. Sci.
,
219
(
3
), pp.
264
270
. 10.1016/S0169-4332(03)00807-9
3.
Nisar
,
S.
,
Li
,
L.
, and
Sheikh
,
M. A.
,
2013
, “
Laser Glass Cutting Techniques—A Review
,”
J. Laser Appl.
,
25
(
4
), p.
42010
. 10.2351/1.4807895
4.
Yoldas
,
B. E.
, and
Partlow
,
D. P.
,
1984
, “
Wide Spectrum Antireflective Coating for Fused Silica and Other Glasses
,”
Appl. Opt.
,
23
(
9
), p.
1418
. 10.1364/AO.23.001418
5.
Corcoran
,
A.
,
Sexton
,
L.
,
Seaman
,
B.
,
Ryan
,
P.
, and
Byrne
,
G.
,
2002
, “
The Laser Drilling of Multi-Layer Aerospace Material Systems
,”
J. Mater. Process. Technol.
,
123
(
1
), pp.
100
106
. 10.1016/S0924-0136(01)01123-2
6.
Tuersley
,
I. P.
,
Hoult
,
T. P.
, and
Pashby
,
I. R.
,
1998
, “
Nd–YAG Laser Machining of SiC Fibre/Borosilicate Glass Composites. Part II. The Effect of Process Variables
,”
Composites, Part A
,
29
(
8
), pp.
955
964
. 10.1016/S1359-835X(98)00018-9
7.
Kondrashov
,
V. I.
,
Shitova
,
L. A.
,
Litvinov
,
V. A.
, and
Surkov
,
V. V.
,
2001
, “
Characteristics of Cutting Parameters and Their Effect on the Glass Edge Quality
,”
Glass Ceram.
,
58
(
9
), pp.
303
305
. 10.1023/a:1013926908241
8.
Prakash
,
E. S.
,
Sadashivappa
,
K.
,
Joseph
,
V.
, and
Singaperumal
,
M.
,
2001
, “
Nonconventional Cutting of Plate Glass Using Hot Air Jet: Experimental Studies
,”
Mechatronics
,
11
(
6
), pp.
595
615
. 10.1016/S0957-4158(00)00033-7
9.
Zhimalov
,
A. B.
,
Solinov
,
V. F.
,
Kondratenko
,
V. S.
, and
Kaplina
,
T. V.
,
2006
, “
Laser Cutting of Float Glass During Production
,”
Glass Ceram
,
63
(
9
), pp.
319
321
. 10.1007/s10717-006-0112-y
10.
Sundaram
,
M. M.
,
Cherku
,
S.
, and
Rajurkar
,
K. P.
,
2008
, “
Micro Ultrasonic Machining Using oil Based Abrasive Slurry
,”
Proc. ASME 2008 International Manufacturing Science and Engineering Conference Collocated With the 3rd JSME/ASME International Conference on Materials and Processing
,
Evanston, IL, Oct. 7–10
. 10.1115/MSEC_ICMP2008-72138
11.
Nagaraj
,
Y.
,
Jagannatha
,
N.
, and
Sathisha
,
N.
,
2019
, “
Hybrid Non Conventional Machining of Glass—A Review
,”
Appl. Mech. Mater.
,
895
, pp.
8
14
. www.scientific.net/AMM.895.8
12.
Abhishek
,
K.
,
Hiremath
,
S. S.
, and
Karunanidhi
,
S.
,
2018
, “
A Novel Approach to Produce Holes With High Degree of Cylindricity Through Micro-Abrasive Jet Machining (μ-AJM)
,”
CIRP J. Manuf. Sci. Technol.
,
21
, pp.
110
119
. 10.1016/j.cirpj.2018.02.002
13.
Muralidhar
,
S.
,
Pal
,
S.
,
Jagota
,
A.
,
Kale
,
S. R.
, and
Mittal
,
R. K.
,
1999
, “
A Study of Thermal Cutting of Glass
,”
J. Am. Ceram. Soc.
,
82
(
8
), pp.
2166
2176
. 10.1111/j.1151-2916.1999.tb02058.x
14.
Sundaram
,
M. M.
, and
Rajurkar
,
K. P.
,
2010
, “Electrical and Electrochemical Processes,”
Intelligent Energy Field Manufacturing and Interdisciplinary Process Innovations
,
CRC Press
, pp.
173
212
.
15.
Jui
,
S. K.
,
Kamaraj
,
A. B.
, and
Sundaram
,
M. M.
,
2013
, “
High Aspect Ratio Micromachining of Glass by Electrochemical Discharge Machining (ECDM)
,”
J. Manuf. Process.
,
15
(
4
), pp.
460
466
. 10.1016/j.jmapro.2013.05.006
16.
Sabahi
,
N.
, and
Razfar
,
M. R.
,
2018
, “
Investigating the Effect of Mixed Alkaline Electrolyte (NaOH + KOH) on the Improvement of Machining Efficiency in 2D Electrochemical Discharge Machining (ECDM)
,”
Int. J. Adv. Manuf. Technol.
,
95
(
1
), pp.
643
657
. 10.1007/s00170-017-1210-4
17.
Dubey
,
A. K.
, and
Yadava
,
V.
,
2008
, “
Experimental Study of Nd:YAG Laser Beam Machining—An Overview
,”
J. Mater. Process.Technol.
,
195
(
1–3
), pp.
15
26
. 10.1016/j.jmatprotec.2007.05.041
18.
Park
,
S. S.
,
Wei
,
Y.
, and
Jin
,
X. L.
,
2018
, “
Direct Laser Assisted Machining With a Sapphire Tool for Bulk Metallic Glass
,”
CIRP Ann.
,
67
(
1
), pp.
193
196
. 10.1016/j.cirp.2018.04.070
19.
Naeem
,
M.
,
2013
, “
Laser Processing of Reflective Materials
,”
Laser Tech. J.
,
10
(
1
), pp.
18
20
. 10.1002/latj.201390001
20.
Ito
,
Y.
,
Ueki
,
M.
,
Kizaki
,
T.
,
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2017
, “
Precision Cutting of Glass by Laser-Assisted Machining
,”
Procedia Manuf.
,
7
, pp.
240
245
. 10.1016/j.promfg.2016.12.058
21.
Tagliaferri
,
F.
,
Leopardi
,
G.
,
Semmler
,
U.
,
Kuhl
,
M.
, and
Palumbo
,
B.
,
2013
, “
Study of the Influences of Laser Parameters on Laser Assisted Machining Processes
,”
Procedia CIRP
,
8
, pp.
170
175
. 10.1016/j.procir.2013.06.084
22.
Mistry
,
V.
, and
James
,
S.
,
2018
, “
Finite Element Analysis and Simulation of Liquid-Assisted Laser Beam Machining Process
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5
), pp.
2325
2331
. 10.1007/s00170-017-1009-3
23.
Wu
,
Z.
,
Melaibari
,
A. A.
,
Molian
,
P.
, and
Shrotriya
,
P.
,
2015
, “
Hybrid CO2 Laser/Waterjet (CO2-LWJ) Cutting of Polycrystalline Cubic Boron Nitride (PCBN) Blanks With Phase Transformation Induced Fracture
,”
Opt. Laser Technol.
,
70
, pp.
39
44
. 10.1016/j.optlastec.2015.01.013
24.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-machining Processes
,”
CIRP Ann.
,
62
(
1
), pp.
211
214
. 10.1016/j.cirp.2013.03.036
25.
Ion
,
M. N.
,
Daniel
,
G.
, and
Daniela
,
G.
,
2012
, “
Some Results of Finite Element Modelling of Laser Beam Micro-machining Aided by Ultrasonics
,”
Revista de Tehnologii Neconventionale
,
16
(
4
), p.
15
.
26.
Darvishi
,
S.
,
Cubaud
,
T.
, and
Longtin
,
J. P.
,
2012
, “
Ultrafast Laser Machining of Tapered Microchannels in Glass and PDMS
,”
Opt. Lasers Eng.
,
50
(
2
), pp.
210
214
. 10.1016/j.optlaseng.2011.09.003
27.
Thomas
,
I. M.
,
1986
, “
High Laser Damage Threshold Porous Silica Antireflective Coating
,”
Appl. Opt.
,
25
(
9
), p.
1481
. 10.1364/AO.25.001481
28.
Ahsan
,
M. S.
,
2014
, “
Formation of Periodic Micro/Nano-holes Array in Boro-Aluminosilicate Glass by Single-Pulse Femtosecond Laser Machining
,”
J. Laser Micro/Nanoeng.
,
9
(
1
), pp.
19
24
. 10.2961/jlmn.2014.01.0005
29.
Ali
,
A.
, and
Sundaram
,
M.
,
2016
, “
Experimental Study of Chemo-Thermal Micromachining of Glass
,”
Proceedings of ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
. http://dx.doi.org/10.1115/MSEC2016-8772
30.
Kruusing
,
A.
,
2004
, “
Underwater and Water-Assisted Laser Processing: Part 1—General Features, Steam Cleaning and Shock Processing
,”
Opti. Lasers Eng.
,
41
(
2
), pp.
307
327
. 10.1016/S0143-8166(02)00142-2
31.
Tangwarodomnukun
,
V.
, and
Dumkum
,
C.
,
2018
, “
Experiment and Analytical Model of Laser Milling Process in Soluble oil
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1
), pp.
607
621
. 10.1007/s00170-018-1648-z
32.
Ali
,
A.
, and
Sundaram
,
M.
,
2018
, “
Drilling of Crack Free Micro Holes in Glass by Chemo-Thermal Micromachining Process
,”
Precis. Eng.
,
54
, pp.
33
38
. 10.1016/j.precisioneng.2018.04.015
33.
Arif
,
M.
,
Rahman
,
M.
,
San
,
W. Y.
, and
Doshi
,
N.
,
2011
, “
An Experimental Approach to Study the Capability of End-Milling for Microcutting of Glass
,”
Int. J. Adv. Manuf. Technol.
,
53
(
9
), pp.
1063
1073
. 10.1007/s00170-010-2893-y
34.
Kizaki
,
T.
,
Ogasahara
,
T.
,
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2014
, “
Ultraviolet-Laser-Assisted Precision Cutting of Yttria-Stabilized Tetragonal Zirconia Polycrystal
,”
J. Mater. Process. Technol.
,
214
(
2
), pp.
267
275
. 10.1016/j.jmatprotec.2013.09.015
35.
Ito
,
Y.
,
Kizaki
,
T.
,
Shinomoto
,
R.
,
Ueki
,
M.
,
Sugita
,
N.
, and
Mitsuishi
,
M.
,
2017
, “
High-Efficiency and Precision Cutting of Glass by Selective Laser-Assisted Milling
,”
Precis. Eng.
,
47
, pp.
498
507
. 10.1016/j.precisioneng.2016.10.005
36.
Ikoma
,
S.
,
Nguyen
,
H. K.
,
Kashiwagi
,
M.
,
Uchiyama
,
K.
,
Shima
,
K.
, and
Tanaka
,
D.
, “
3kW Single Stage all-Fiber Yb-Doped Single-Mode Fiber Laser for Highly Reflective and Highly Thermal Conductive Materials Processing
,”
SPIE
, p.
100830Y-100830Y-100836
.
37.
Casalino
,
G.
,
Losacco
,
A. M.
,
Arnesano
,
A.
,
Facchini
,
F.
,
Pierangeli
,
M.
, and
Bonserio
,
C.
,
2017
, “
Statistical Analysis and Modelling of an Yb: KGW Femtosecond Laser Micro-drilling Process
,”
Procedia CIRP
,
62
, pp.
275
280
. 10.1016/j.procir.2016.06.111
38.
Casalino
,
G.
,
Facchini
,
F.
,
Mortello
,
M.
, and
Mummolo
,
G.
,
2016
, “
ANN Modelling to Optimize Manufacturing Processes: the Case of Laser Welding
,”
IFAC PapersOnLine
,
49
(
12
), pp.
378
383
. 10.1016/j.ifacol.2016.07.634
39.
Shrestha
,
S.
, and
Chou
,
Y. K.
,
2019
, “
A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101002
. 10.1115/1.4044100
You do not currently have access to this content.