Abstract

The aim of this study is to find out how TiB2 reinforced Mg-ZE41 matrix composites perform mechanically, wear-wise, and corrosion-wise. By altering the content of TiB2 reinforcement particles in the ZE41 matrix as 4%, 8%, 12%, and 16%, the composites are manufactured using the friction stir processing technique. The micro-structural analysis demonstrates that TiB2 particles are distributed uniformly throughout the matrix. The addition of TiB2 increased the hardness and wear resistance of the material significantly. The inclusion of TiB2 particles in the matrix shifted the wear mechanism from adhesive to abrasive. The ultimate tensile strength and the yield strength of the manufactured composites were also dramatically improved compared to Mg-ZE41 alloy. The addition of TiB2, on the other hand, has had no positive or negative influence on the corrosion performance of the Mg-ZE41 alloy.

References

1.
Ye
,
H.
, and
Liu
,
X.
,
2005
, “
Microstructure and Tensile Properties of Ti6Al4V/AM60B Magnesium Matrix Composite
,”
J. Alloys Compd.
,
402
(
1–2
), pp.
162
169
.
2.
García-Rodríguez
,
S.
,
Torres
,
B.
,
Maroto
,
A.
,
López
,
A.
,
Otero
,
E.
, and
Rams
,
J.
,
2017
, “
Dry Sliding Wear Behavior of Globular AZ91 Magnesium Alloy and AZ91/SiCp Composites
,”
Wear
,
390
, pp.
1
10
.
3.
Labib
,
F.
,
Ghasemi
,
H.
, and
Mahmudi
,
R.
,
2016
, “
Dry Tribological Behavior of Mg/SiCp Composites at Room and Elevated Temperatures
,”
Wear
,
348
, pp.
69
79
.
4.
Mohamed
,
A.
,
Mohammed
,
M.
,
Ibrahim
,
A.
, and
El-Kady
,
O. A.
,
2020
, “
Effect of Nano Al2O3 Coated Ag Reinforced Cu Matrix Nanocomposites on Mechanical and Tribological Behavior Synthesis by p/m Technique
,”
J. Compos. Mater.
,
54
(
30
), pp.
4921
4928
.
5.
Sadoun
,
A.
,
Najjar
,
I.
,
Abd-Elwahed
,
M.
, and
Meselhy
,
A.
,
2020
, “
Experimental Study on Properties of Al–Al2O3 Nanocomposite Hybridized by Graphene Nanosheets
,”
J. Mater. Res. Technol.
,
9
(
6
), pp.
14708
14717
.
6.
Fathy
,
A.
,
Shaker
,
A.
,
Hamid
,
M. A.
, and
Megahed
,
A.
,
2017
, “
The Effects of Nano-Silica/Nanoalumina on Fatigue Behavior of Glass Fiber-Reinforced Epoxy Composites
,”
J. Compos. Mater.
,
51
(
12
), pp.
1667
1679
.
7.
Aydin
,
F.
, and
Sun
,
Y.
,
2018
, “
Investigation of Wear Behaviour and Microstructure of Hot-Pressed TiB2 Particulate-Reinforced Magnesium Matrix Composites
,”
Can. Metall. Q.
,
57
(
4
), pp.
455
469
.
8.
Jiang
,
Q.
,
Wang
,
H.
,
Ma
,
B.-X.
,
Wang
,
Y.
, and
Zhao
,
F.
,
2005
, “
Fabrication of B4C Particulate Reinforced Magnesium Matrix Composite by Powder Metallurgy
,”
J. Alloys Compd.
,
386
(
1–2
), pp.
177
181
.
9.
Abd-Elwahed
,
M.
,
Ibrahim
,
A.
, and
Reda
,
M.
,
2020
, “
Effects of ZrO2 Nanoparticle Content on Microstructure and Wear Behavior of Titanium Matrix Composite
,”
J. Mater. Res. Technol.
,
9
(
4
), pp.
8528
8534
.
10.
Shamekh
,
M.
,
Pugh
,
M.
, and
Medraj
,
M.
,
2012
, “
Understanding the Reaction Mechanism of In-Situ Synthesized (TiC–TiB2)/AZ91 Magnesium Matrix Composites
,”
Mater. Chem. Phys.
,
135
(
1
), pp.
193
205
.
11.
Fang
,
C.
,
Liu
,
G.
,
Hao
,
H.
, and
Zhang
,
X.
,
2017
, “
Effects of Particle Distribution on Microstructural Evolution and Mechanical Properties of TiB2/AZ31 Composite Sheets
,”
Mater. Sci. Eng. A
,
684
, pp.
592
597
.
12.
Wang
,
H.
,
Jiang
,
Q.
,
Wang
,
Y.
,
Ma
,
B.
, and
Zhao
,
F.
,
2004
, “
Fabrication of TiB2 Particulate Reinforced Magnesium Matrix Composites by Powder Metallurgy
,”
Mater. Lett.
,
58
(
27–28
), pp.
3509
3513
.
13.
Wang
,
Y.
,
Wang
,
H.-Y.
,
Xiu
,
K.
,
Wang
,
H.-Y.
, and
Jiang
,
Q.-C.
,
2006
, “
Fabrication of TiB2 Particulate Reinforced Magnesium Matrix Composites by Two-Step Processing Method
,”
Mater. Lett.
,
60
(
12
), pp.
1533
1537
.
14.
Meher
,
A.
,
Mahapatra
,
M. M.
,
Samal
,
P.
, and
Vundavilli
,
P. R.
,
2021
, “
Abrasive Wear Behaviour of TiB2 Reinforced In-Situ Synthesized Magnesium RZ5 Alloy Based Metal Matrix Composites
,”
Met. Mater. Int.
,
27
(
9
), pp.
3652
3665
.
15.
Aydin
,
F.
,
Sun
,
Y.
, and
Emre Turan
,
M.
,
2019
, “
The Effect of TiB2 Content on Wear and Mechanical Behaviour of AZ91 Magnesium Matrix Composites Produced by Powder Metallurgy
,”
Powder Metall. Met. Ceram.
,
57
(
9
), pp.
564
572
.
16.
Gui
,
M.
,
Li
,
P.
, and
Han
,
J.
,
2003
, “
Fabrication and Characterization of Cast Magnesium Matrix Composites by Vacuum Stir Casting Process
,”
J. Mater. Eng. Perform.
,
12
(
2
), pp.
128
134
.
17.
Zheng
,
M.
,
Wu
,
K.
,
Kamado
,
S.
, and
Kojima
,
Y.
,
2003
, “
Aging Behavior of Squeeze Cast SiCw/AZ91 Magnesium Matrix Composite
,”
Mater. Sci. Eng. A
,
348
(
1–2
), pp.
67
75
.
18.
Kevorkijan
,
V.
, and
Davor Škapin
,
S.
,
2009
, “
Mg/B4C Composites With a High Volume Fraction of Fine Ceramic Reinforcement
,”
Mater. Manuf. Processes
,
24
(
12
), pp.
1337
1340
.
19.
Seidi
,
E.
,
Miller
,
S. F.
, and
Carlson
,
B. E.
,
2021
, “
Friction Surfacing Deposition by Consumable Tools
,”
ASME J. Manuf. Sci. Eng.
,
143
(
12
).
20.
Zhao
,
Y.
,
Huang
,
X.
,
Li
,
Q.
,
Huang
,
J.
, and
Yan
,
K.
,
2015
, “
Effect of Friction Stir Processing With B4C Particles on the Microstructure and Mechanical Properties of 6061 Aluminum Alloy
,”
Int. J. Adv. Manuf. Technol.
,
78
(
9
), pp.
1437
1443
.
21.
Sharma
,
V.
,
Prakash
,
U.
, and
Kumar
,
B. M.
,
2015
, “
Surface Composites by Friction Stir Processing: A Review
,”
J. Mater. Process. Technol.
,
224
, pp.
117
134
.
22.
Sadoun
,
A.
,
Wagih
,
A.
,
Fathy
,
A.
, and
Essa
,
A.
,
2019
, “
Effect of Tool pin Side Area Ratio on Temperature Distribution in Friction Stir Welding
,”
Results Phys.
,
15
, p.
102814
.
23.
Kumar
,
K.
, and
Kailas
,
S. V.
,
2008
, “
The Role of Friction Stir Welding Tool on Material Flow and Weld Formation
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
367
374
.
24.
Liu
,
D.
,
Shen
,
M.
,
Tang
,
Y.
,
Hu
,
Y.
, and
Zhao
,
L.
,
2019
, “
Effect of Multipass Friction Stir Processing on Surface Corrosion Resistance and Wear Resistance of ZK60 Alloy
,”
Met. Mater. Int.
,
25
(
5
), pp.
1182
1190
.
25.
Shafiei-Zarghani
,
A.
,
Kashani-Bozorg
,
S.
, and
Zarei-Hanzaki
,
A.
,
2009
, “
Microstructures and Mechanical Properties of Al/Al2O3 Surface Nanocomposite Layer Produced by Friction Stir Processing
,”
Mater. Sci. Eng. A
,
500
(
1–2
), pp.
84
91
.
26.
Bauri
,
R.
,
Yadav
,
D.
, and
Suhas
,
G.
,
2011
, “
Effect of Friction Stir Processing (FSP) on Microstructure and Properties of Al–TiC In Situ Composite
,”
Mater. Sci. Eng. A
,
528
(
13–14
), pp.
4732
4739
.
27.
Vedabouriswaran
,
G.
, and
Aravindan
,
S.
,
2018
, “
Development and Characterization Studies on Magnesium Alloy (RZ 5) Surface Metal Matrix Composites Through Friction Stir Processing
,”
J. Magnes. Alloy.
,
6
(
2
), pp.
145
163
.
28.
Park
,
S.
,
2003
, “
Kokawa h. Basal Piabe Texture and Flow Pattem in Friction Stir Weld of a Magnesium Alloy
,”
Metall. Mater. Trans. A
,
34
(
4
), pp.
987
994
.
29.
Han
,
J.
,
Chen
,
J.
,
Peng
,
L.
,
Zheng
,
F.
,
Rong
,
W.
,
Wu
,
Y.
, and
Ding
,
W.
,
2016
, “
Influence of Processing Parameters on Thermal Field in Mg–Nd–Zn–Zr Alloy During Friction Stir Processing
,”
Mater. Des.
,
94
, pp.
186
194
.
30.
Ratna Sunil
,
B.
,
Sampath Kumar
,
T.
,
Chakkingal
,
U.
,
Nandakumar
,
V.
, and
Doble
,
M.
,
2014
, “
Nanohydroxyapatite Reinforced AZ31 Magnesium Alloy by Friction Stir Processing: A Solid State Processing for Biodegradable Metal Matrix Composites
,”
J. Mater. Sci.: Mater. Med.
,
25
(
4
), pp.
975
988
.
31.
Sahoo
,
B.
,
Khan
,
F.
,
Babu
,
S.
,
Panigrahi
,
S.
, and
Ram
,
G. J.
,
2018
, “
Microstructural Modification and Its Effect on Strengthening Mechanism and Yield Asymmetry of In-Situ TiC-TiB2/AZ91 Magnesium Matrix Composite
,”
Mater. Sci. Eng. A
,
724
, pp.
269
282
.
32.
Vogt
,
R.
,
Zhang
,
Z.
,
Li
,
Y.
,
Bonds
,
M.
,
Browning
,
N.
,
Lavernia
,
E.
, and
Schoenung
,
J.
,
2009
, “
The Absence of Thermal Expansion Mismatch Strengthening in Nanostructured Metal–Matrix Composites
,”
Scr. Mater.
,
61
(
11
), pp.
1052
1055
.
33.
Zhang
,
Z.
, and
Chen
,
D.
,
2008
, “
Contribution of Orowan Strengthening Effect in Particulatereinforced Metal Matrix Nanocomposites
,”
Mater. Sci. Eng. A
,
483
, pp.
148
152
.
34.
Sanaty-Zadeh
,
A.
,
2012
, “
Comparison Between Current Models for the Strength of Particulate-Reinforced Metal Matrix Nanocomposites With Emphasis on Consideration of Hall–Petch Effect
,”
Mater. Sci. Eng. A
,
531
, pp.
112
118
.
35.
Mahmudi
,
R.
, and
Poole
,
W.
,
2009
, “
Enhanced Properties of mg-Based Nano-Composites Reinforced With Al2O3
,”
Mater. Sci. Eng. A
,
519
(
1–2
), pp.
198
203
.
36.
Aatthisugan
,
I.
,
Rose
,
A. R.
, and
Jebadurai
,
D. S.
,
2017
, “
Mechanical and Wear Behaviour of AZ91d Magnesium Matrix Hybrid Composite Reinforced With Boron Carbide and Graphite
,”
J. Magnes. Alloy.
,
5
(
1
), pp.
20
25
.
37.
Selvam
,
B.
,
Marimuthu
,
P.
,
Narayanasamy
,
R.
,
Anandakrishnan
,
V.
,
Tun
,
K.
,
Gupta
,
M.
, and
Kamaraj
,
M.
,
2014
, “
Dry Sliding Wear Behaviour of Zinc Oxide Reinforced Magnesium Matrix Nanocomposites
,”
Mater. Des.
,
58
, pp.
475
481
.
38.
Zhao
,
M.-C.
,
Liu
,
M.
,
Song
,
G.-L.
, and
Atrens
,
A.
,
2008
, “
Influence of Microstructure on Corrosion of As-Cast ZE41
,”
Adv. Eng. Mater.
,
10
(
1–2
), pp.
104
111
.
39.
Neil
,
W.
,
Forsyth
,
M.
,
Howlett
,
P. C.
,
Hutchinson
,
C.
, and
Hinton
,
B. R. W.
,
2009
, “
Corrosion of Magnesium Alloy ZE41—The Role of Microstructural Features
,”
Corros. Sci.
,
51
(
2
), pp.
387
394
.
40.
Tiwari
,
S.
,
Balasubramaniam
,
R.
, and
Gupta
,
M.
,
2007
, “
Corrosion Behavior of sic Reinforced Magnesium Composites
,”
Corros. Sci.
,
49
(
2
), pp.
711
725
.
41.
Esmaily
,
M.
,
Mortazavi
,
N.
,
Svensson
,
J. E.
,
Halvarsson
,
M.
,
Jarfors
,
A. E. W.
,
Wessén
,
M.
,
Arrabal
,
R.
, and
Johansson
,
L. G.
,
2016
, “
On the Microstructure and Corrosion Behavior of AZ91/SiC Composites Produced by Rheocasting
,”
Mater. Chem. Phys.
,
180
, pp.
29
37
.
42.
Jiang
,
P.
,
Blawert
,
C.
, and
Zheludkevich
,
M. L.
,
2020
, “
The Corrosion Performance and Mechanical Properties of Mg-Zn Based Alloys: A Review
,”
Corros. Mater Degrad.
,
1
(
1
), pp.
92
158
.
43.
Falcon
,
L.
,
Bedolla B
,
E.
,
Lemus
,
J.
,
Leon
,
C.
,
Rosales
,
I.
, and
Gonzalez-Rodriguez
,
J.
,
2011
, “
Corrosion Behavior of Mg-Al/TiC Composites in Nacl Solution
,”
Int. J. Corros.
,
2011
, pp.
1
7
.
You do not currently have access to this content.