Abstract

A proposed benefit to additive manufacturing (AM) silicone components is the ability to selectively add fillers such as agents to make drug delivery devices. Laser curing silicones have benefits such as selective or graded curing of specific locations in the part. A challenge with high-temperature extrusion-based AM processes is understanding how particles of various thermal sensitivities, sizes, and loading amounts may affect the AM build parameters, polymer crosslink densities, and final products produced. This article investigates the effect of particle loading on laser-cured medical-grade silicone. Die swelling of silica gel-loaded silicone, chosen as a relatively nonthermally sensitive representative filler for drug agents, was evaluated as a function of extrusion speed, particle size, and particle loading amount. A design of experiments (DoE) on silica gel-loaded samples through tetrahydrofuran (THF) swell studies was done to explore how layer height, particle size, and particle loading amount may affect crosslink density. Last, the AM process with the female hormone 2-methoxyestradiol (2-Me2) and the drug Cyclosporin was investigated using nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography (HPLC) elution to observe potential alterations of the final product. The results show promise for drug-loaded silicone samples fabricated using an extrude and laser curing AM technique.

References

1.
Shin
,
Y. C.
,
Wu
,
B.
,
Lei
,
S.
,
Cheng
,
G. J.
, and
Lawrence Yao
,
Y.
,
2020
, “
Overview of Laser Applications in Manufacturing and Materials Processing in Recent Years
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110818
.
2.
Shuai
,
C.
,
Shuai
,
C.
,
Feng
,
P.
,
Gao
,
C.
,
Peng
,
S.
, and
Yang
,
Y.
,
2018
, “
Antibacterial Capability, Physicochemical Properties, and Biocompatibility of nTiO2 Incorporated Polymeric Scaffolds
,”
Polymers (Basel)
,
10
(
3
), p.
328
.
3.
Maróti
,
P.
,
Kocsis
,
B.
,
Ferencz
,
A.
,
Nyitrai
,
M.
, and
Lőrinczy
,
D.
,
2020
, “
Differential Thermal Analysis of the Antibacterial Effect of PLA-Based Materials Planned for 3D Printing
,”
J. Therm. Anal. Calorim.
,
139
(
1
), pp.
367
374
.
4.
Mathew
,
E.
,
Gilmore
,
B. F.
,
Larrañeta
,
E.
, and
Lamprou
,
D. A.
,
2021
, “
Antimicrobial 3D Printed Objects in the Fight Against Pandemics
,”
3D Print. Addit. Manuf.
,
8
(
1
), pp.
79
86
.
5.
Mathew
,
E.
,
Domínguez-Robles
,
J.
,
Stewart
,
S. A.
,
Mancuso
,
E.
,
O’Donnell
,
K.
,
Larrañeta
,
E.
, and
Lamprou
,
D. A.
,
2019
, “
Fused Deposition Modeling As an Effective Tool for Anti-Infective Dialysis Catheter Fabrication
,”
ACS Biomater. Sci. Eng.
,
5
(
11
), pp.
6300
6310
.
6.
Sa
,
L.
,
Kaiwu
,
L.
,
Shenggui
,
C.
,
Junzhong
,
Y.
,
Yongguang
,
J.
,
Lin
,
W.
, and
Li
,
R.
,
2019
, “
3D Printing Dental Composite Resins With Sustaining Antibacterial Ability
,”
J. Mater. Sci.
,
54
(
4
), pp.
3309
3318
.
7.
Makvandi
,
P.
,
Esposito Corcione
,
C.
,
Paladini
,
F.
,
Gallo
,
A. L.
,
Montagna
,
F.
,
Jamaledin
,
R.
,
Pollini
,
M.
, and
Maffezzoli
,
A.
,
2018
, “
Antimicrobial Modified Hydroxyapatite Composite Dental Bite by Stereolithography
,”
Polym. Adv. Technol.
,
29
(
1
), pp.
364
371
.
8.
Zuniga
,
J.
,
2018
, “
3D Printed Antibacterial Prostheses
,”
Appl. Sci.
,
8
(
9
), p.
1651
.
9.
Elkasabgy
,
N. A.
,
Mahmoud
,
A. A.
, and
Maged
,
A.
,
2020
, “
3D Printing: An Appealing Route for Customized Drug Delivery Systems
,”
Int. J. Pharm.
,
588
, p.
119732
.
10.
Prasad
,
L. K.
, and
Smyth
,
H.
,
2016
, “
3D Printing Technologies for Drug Delivery: A Review
,”
Drug Dev. Ind. Pharm.
,
42
(
7
), pp.
1019
1031
.
11.
Chen
,
D.
,
Xu
,
X.-Y.
,
Li
,
R.
,
Zang
,
G.-A.
,
Zhang
,
Y.
,
Wang
,
M.-R.
,
Xiong
,
M.-F.
, et al
,
2020
, “
Preparation and In Vitro Evaluation of FDM 3D-Printed Ellipsoid-Shaped Gastric Floating Tablets With Low Infill Percentages
,”
AAPS PharmSciTech
,
21
(
1
), p.
6
.
12.
Chai
,
X.
,
Chai
,
H.
,
Wang,
X.
,
Yang
,
J.
,
Li
,
J.
,
Zhao
,
Y.
,
Cai
,
W.
,
Tao
,
T.
, and
Xiang
,
X.
,
2017
, “
Fused Deposition Modeling (FDM) 3D Printed Tablets for Intragastric Floating Delivery of Domperidone
,”
Sci. Rep.
,
7
(
1
), p.
2829
.
13.
Tagami
,
T.
,
Yoshimura
,
N.
,
Goto
,
E.
,
Noda
,
T.
, and
Ozeki
,
T.
,
2019
, “
Fabrication of Muco-Adhesive Oral Films by the 3D Printing of Hydroxypropyl Methylcellulose-Based Catechin-Loaded Formulations
,”
Biol. Pharm. Bull.
,
42
(
11
), pp.
1898
1905
.
14.
Gioumouxouzis
,
C. I.
,
Tzimtzimis
,
E.
,
Katsamenis
,
O. L.
,
Dourou
,
A.
,
Markopoulou
,
C.
,
Bouropoulos
,
N.
,
Tzetzis
,
D.
, and
Fatouros,
D. G.
,
2020
, “
Fabrication of an Osmotic 3D Printed Solid Dosage Form for Controlled Release of Active Pharmaceutical Ingredients
,”
Eur. J. Pharm. Sci.
,
143
, p.
105176
.
15.
Wu
,
G.
,
Wu
,
W.
,
Zheng
,
Q.
,
Li
,
J.
,
Zhou
,
J.
, and
Hu
,
Z.
,
2014
, “
Experimental Study of PLLA/INH Slow Release Implant Fabricated by Three Dimensional Printing Technique and Drug Release Characteristics In Vitro
,”
Biomed. Eng. Online
,
13
(
1
), p.
97
.
16.
Skowyra
,
J.
,
Pietrzak
,
K.
, and
Alhnan
,
M. A.
,
2015
, “
Fabrication of Extended-Release Patient-Tailored Prednisolone Tablets Via Fused Deposition Modelling (FDM) 3D Printing
,”
Eur. J. Pharm. Sci.
,
68
, pp.
11
17
.
17.
Water
,
J. J.
,
Bohr
,
A.
,
Boetker,
J.
,
Aho
,
J.
,
Sandler
,
N.
,
Nielsen
,
H. M.
, and
Rantanen
,
J.
,
2015
, “
Three-Dimensional Printing of Drug-Eluting Implants: Preparation of an Antimicrobial Polylactide Feedstock Material
,”
J. Pharm. Sci.
,
104
(
3
), pp.
1099
1107
.
18.
Goole
,
J.
, and
Amighi
,
K.
,
2016
, “
3D Printing in Pharmaceutics: A New Tool for Designing Customized Drug Delivery Systems
,”
Int. J. Pharm.
,
499
(
1–2
), pp.
376
394
.
19.
Yu
,
D. G.
,
Yang
,
X. L.
,
Huang
,
W. D.
,
Liu
,
J.
,
Wang
,
Y. G.
, and
Xu
,
H.
,
2007
, “
Tablets With Material Gradients Fabricated by Three-Dimensional Printing
,”
J. Pharm. Sci.
,
96
(
9
), pp.
2446
2456
.
20.
Yu
,
D.-G.
,
Shen
,
X.-X.
,
Branford-White
,
C.
,
Zhu
,
L.-M.
,
White
,
K.
, and
Yang
,
X. L.
,
2009
, “
Novel Oral Fast-Disintegrating Drug Delivery Devices With Predefined Inner Structure Fabricated by Three-Dimensional Printing
,”
J. Pharm. Pharmacol.
,
61
(
3
), pp.
323
329
.
21.
Kadry
,
H.
,
Al-Hilal
,
T. A.
,
Keshavarz
,
A.
,
Alam
,
F.
,
Xu
,
C.
,
Joy
,
A.
, and
Ahsan
,
F.
,
2018
, “
Multi-Purposable Filaments of HPMC for 3D Printing of Medications With Tailored Drug Release and Timed-Absorption
,”
Int. J. Pharm.
,
544
(
1
), pp.
285
296
.
22.
Gross
,
B. C.
,
Erkal
,
J. L.
,
Lockwood
,
S. Y.
,
Chen
,
C.
, and
Spence
,
D. M.
,
2014
, “
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
,”
Anal. Chem.
,
86
(
7
), pp.
3240
3253
.
23.
Guo
,
B.
,
Ji
,
X.
,
Chen
,
X.
,
Li
,
G.
,
Lu
,
Y.
, and
Bai
,
J.
,
2020
, “
A Highly Stretchable and Intrinsically Self-Healing Strain Sensor Produced by 3D Printing
,”
Virtual Phys. Prototyp.
,
15
(
Suppl. 1
), pp.
520
531
.
24.
Almutairi
,
M. D.
,
Aria
,
A. I.
,
Thakur
,
V. K.
, and
Khan
,
M. A.
,
2020
, “
Self-Healing Mechanisms for 3D-Printed Polymeric Structures: From Lab to Reality
,”
Polymers (Basel)
,
12
(
7
), p.
1534
.
25.
Sanders
,
P.
,
Young
,
A. J.
,
Qin
,
Y.
,
Fancey
,
K. S.
,
Reithofer
,
M. R.
,
Guillet-Nicolas
,
R.
,
Kleitz
,
F.
,
Pamme
,
N.
,
Chin
,
J. M.
,
2019
, “
Stereolithographic 3D Printing of Extrinsically Self-Healing Composites
,”
Sci. Rep.
,
9
(
1
), p.
388
.
26.
Leigh
,
S. J.
,
Bradley
,
R. J.
,
Purssell
,
C. P.
,
Billson
,
D. R.
, and
Hutchins
,
D. A.
,
2012
, “
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,”
PLoS One
,
7
(
11
), p.
e49365
.
27.
Kwok
,
S. W.
,
Goh
,
K. H. H.
,
Tan
,
Z. D.
,
Tan
,
S. T. M.
,
Tjiu
,
W. W.
,
Soh
,
J. Y.
,
Ng
,
Z. J. G.
,
Chan
,
Y. Z.
,
Hui
,
H. K.
, and
Goh
,
K. E. J.
,
2017
, “
Electrically Conductive Filament for 3D-Printed Circuits and Sensors
,”
Appl. Mater. Today
,
9
, pp.
167
175
.
28.
Muth
,
J. T.
,
Vogt
,
D. M.
,
Truby
,
R. L.
,
Mengüç
,
Y.
,
Kolesky
,
D. B.
,
Wood
,
R. J.
,
Lewis
,
J. A.
,
2014
, “
Embedded 3D Printing of Strain Sensors Within Highly Stretchable Elastomers
,”
Adv. Mater.
,
26
(
36
), pp.
6307
6312
.
29.
Stano
,
G.
,
Di Nisio
,
A.
,
Lanzolla
,
A. M.
,
Ragolia
,
M.
, and
Percoco
,
G.
,
2020
, “
Fused Filament Fabrication of Commercial Conductive Filaments: Experimental Study on the Process Parameters Aimed at the Minimization, Repeatability and Thermal Characterization of Electrical Resistance
,”
Int. J. Adv. Manuf. Technol.
,
111
(
9–10
), pp.
2971
2986
.
30.
Kim
,
N. P.
,
2020
, “
3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane
,”
Polymers (Basel)
,
12
(
6
), p.
1224
.
31.
Hwang
,
S.
,
Reyes
,
E. I.
,
Moon
,
K.
,
Rumpf
,
R. C.
, and
Kim
,
N. S.
,
2015
, “
Thermo-Mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
,”
J. Electron. Mater.
,
44
(
3
), pp.
771
777
.
32.
Masood
,
S. H.
, and
Song
,
W. Q.
,
2005
, “
Thermal Characteristics of a New Metal/Polymer Material for FDM Rapid Prototyping Process
,”
Assem. Autom.
,
25
(
4
), pp.
309
315
.
33.
Nikzad
,
M.
,
Masood
,
S. H.
, and
Sbarski
,
I.
,
2011
, “
Thermo-Mechanical Properties of a Highly Filled Polymeric Composites for Fused Deposition Modeling
,”
Mater. Des.
,
32
(
6
), pp.
3448
3456
.
34.
Rodriguez
,
N.
,
Ruelas
,
S.
,
Forien
,
J.-B.
,
Dudukovic
,
N.
,
DeOtte
,
J.
,
Rodriguez
,
J.
,
Moran
,
B.
,
Lewicki
,
J. P.
,
Duoss
,
E. B.
, and
Oakdale
,
J. S.
,
2021
, “
3D Printing of High Viscosity Reinforced Silicone Elastomers
,”
Polymers (Basel)
,
13
(
14
), p.
2239
.
35.
McCoul
,
D.
,
Rosset
,
S.
,
Schlatter
,
S.
, and
Shea
,
H.
,
2017
, “
Inkjet 3D Printing of UV and Thermal Cure Silicone Elastomers for Dielectric Elastomer Actuators
,”
Smart Mater. Struct.
,
26
(
12
), p.
125022
.
36.
Porter
,
D. A.
,
Cohen
,
A. L.
,
Krueger
,
P. S.
, and
Son
,
D. Y.
,
2018
, “
Additive Manufacturing With Ultraviolet Curable Silicones Containing Carbon Black
,”
3D Print. Addit. Manuf.
,
5
(
1
), pp.
73
86
.
37.
Porter
,
D. A.
,
Davis
,
N.
,
Krueger
,
P. S.
,
Cohen
,
A. L.
, and
Son
,
D.
,
2020
, “
Additive Manufacturing by Material Extrusion With Medical Grade Silicone Elastomers and IR Laser Curing
,”
Rapid Prototyp. J.
,
26
(
1
), pp.
145
155
.
38.
Farahmandghavi
,
F.
,
Imani
,
M.
, and
Hajiesmaeelian
,
F.
,
2019
, “
Silicone Matrices Loaded With Levonorgestrel Particles: Impact of the Particle Size on Drug Release
,”
J. Drug Deliv. Sci. Technol.
,
49
, pp.
132
142
.
39.
Durban
,
M. M.
,
Lenhardt
,
J. M.
,
Wu
,
A. S.
,
Small
,
W.
,
Bryson
,
T. M.
,
Perez-Perez
,
L.
,
Nguyen
,
D. T.
, et al
,
2018
, “
Custom 3D Printable Silicones With Tunable Stiffness
,”
Macromol. Rapid Commun.
,
39
(
4
), p.
1700563
.
40.
Jiang
,
Z.
,
Diggle
,
B.
,
Tan
,
M. L.
,
Viktorova
,
J.
,
Bennett
,
C. W.
, and
Connal
,
L. A.
,
2020
, “
Extrusion 3D Printing of Polymeric Materials With Advanced Properties
,”
Adv. Sci.
,
7
(
17
), p.
2001379
.
41.
Davoodi
,
E.
,
Montazerian
,
H.
,
Khademhosseini
,
A.
, and
Toyserkani
,
E.
,
2020
, “
Sacrificial 3D Printing of Shrinkable Silicone Elastomers for Enhanced Feature Resolution in Flexible Tissue Scaffolds
,”
Acta Biomater.
,
117
, pp.
261
272
.
42.
Schweitzer
,
J.
,
Merad
,
S.
,
Schrodj
,
G.
,
Bally-Le Gall
,
F.
, and
Vonna
,
L.
,
2019
, “
Determination of the Crosslinking Density of a Silicone Elastomer
,”
J. Chem. Educ.
,
96
(
7
), pp.
1472
1478
.
You do not currently have access to this content.