Abstract

Robotic machining efficiency and accuracy are constrained by milling vibrations and chatter. The dynamic characteristics of robots are highly influenced by their poses. Consequently, it is crucial to obtain the robot’s dynamic characteristics in any given pose to mitigate vibrations and prevent chatter during large-range machining. This paper proposes an incremental self-excitation method for effectively identifying low-frequency frequency response functions (FRF) of milling robots. By attaching a mass block at the robot’s end, a fully knowable and controllable excitation increment can be achieved, overcoming the shortcoming of traditional self-excitation methods in capturing the dynamic compliance magnitude. By employing suitable trajectory programming, this method can be executed automatically in the desired poses without the need for manual operations. First, the impulse (moment) of the incremental self-excitation is modeled based on momentum theorem, and the association model of the pulse response increment with the incremental self-excitation is established. To address the issue of sensitivity to noise in the FRF calculation process, the incremental self-excitation is assumed to be a Gaussian pulse, and its identification method is provided. Subsequently, the dimensionality requirement for identifying the nine-item (direct and cross) FRFs is effectively reduced using the modal directionality of milling robots, and the corresponding FRF calculation method is proposed. The rationality of the simplifications and assumptions employed in this method is validated through experiments and calculations. The experimental results in several robot poses show that the proposed method can effectively identify all the direct and cross FRFs in the low-frequency band.

References

1.
Zhu
,
Z.
,
Tang
,
X.
,
Chen
,
C.
,
Peng
,
F.
,
Yan
,
R.
,
Zhou
,
L.
,
Li
,
Z.
, and
Wu
,
J.
,
2021
, “
High Precision and Efficiency Robotic Milling of Complex Parts: Challenges, Approaches and Trends
,”
Chin. J. Aeronaut
,
35
(
2
), pp.
22
46
.
2.
Hoai Nam
,
H.
,
Assadi
,
H.
,
Riviere-Lorphevre
,
E.
,
Verlinden
,
O.
, and
Ahmadi
,
K.
,
2020
, “
Modelling the Dynamics of Industrial Robots for Milling Operations
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101852
.
3.
Chen
,
C.
,
Peng
,
F.
,
Yan
,
R.
,
Tang
,
X.
,
Li
,
Y.
, and
Fan
,
Z.
,
2020
, “
Rapid Prediction of Posture-Dependent FRF of the Tool Tip in Robotic Milling
,”
Rob. Comput. Integr. Manuf.
,
64
, p.
101906
.
4.
Wu
,
L.
,
Dong
,
C. L.
,
Wang
,
G. F.
,
Liu
,
H. T.
, and
Huang
,
T.
,
2021
, “
An Approach to Predict Lower-Order Dynamic Behaviors of a 5-DOF Hybrid Robot Using a Minimum Set of Generalized Coordinates
,”
Rob. Comput. Integr. Manuf.
,
67
, p.
12
.
5.
Mohammadi
,
Y.
, and
Ahmadi
,
K.
,
2022
, “
Chatter in Milling With Robots With Structural Nonlinearity
,”
Mech. Syst. Signal Proc.
,
167
, p.
108523
.
6.
Saupe
,
F.
, and
Knoblach
,
A.
,
2015
, “
Experimental Determination of Frequency Response Function Estimates for Flexible Joint Industrial Manipulators With Serial Kinematics
,”
Mech. Syst. Signal Proc.
,
52–53
, pp.
60
72
.
7.
Mohamed
,
R. P.
,
Xi
,
F. F.
, and
Chen
,
T. Y.
,
2017
, “
A Pose-Based Structural Dynamic Model Updating Method for Serial Modular Robots
,”
Mech. Syst. Signal Proc.
,
85
, pp.
530
555
.
8.
Newman
,
M.
,
Lu
,
K. Y.
, and
Khoshdarregi
,
M.
,
2021
, “
Suppression of Robot Vibrations Using Input Shaping and Learning-Based Structural Models
,”
J. Intell. Mater. Syst. Struct.
,
32
, pp.
1001
1012
.
9.
Sun
,
J. B.
,
Zhang
,
W. M.
, and
Dong
,
X. F.
,
2020
, “
Natural Frequency Prediction Method for 6R Machining Industrial Robot
,”
Appl. Sci.-Basel
,
10
(
22
), p.
14
.
10.
Li
,
S.
,
Fan
,
S.
,
Gu
,
J.
,
Li
,
X.
, and
Huang
,
Z.
,
2022
, “
Blind-Kriging Based Natural Frequency Modeling of Industrial Robot
,”
Precis Eng
,
74
, pp.
126
139
.
11.
Wang
,
R.
,
Li
,
F.
,
Niu
,
J.
, and
Sun
,
Y.
,
2022
, “
Prediction of Pose-Dependent Modal Properties and Stability Limits in Robotic Ball-End Milling
,”
Rob. Comput. Integr. Manuf.
,
75
, p.
102307
.
12.
Liu
,
H.
,
Lin
,
H.
,
Jiang
,
X.
,
Mao
,
X.
,
Liu
,
Q.
, and
Li
,
B.
,
2019
, “
Estimation of Mass Matrix in Machine Tool’s Weak Components Research by Using Symbolic Regression
,”
Comput. Ind. Eng.
,
127
, pp.
998
1011
.
13.
Luo
,
B.
,
Pan
,
D.
,
Cai
,
H.
,
Mao
,
X.
,
Peng
,
F.
,
Mao
,
K.
, and
Li
,
B.
,
2015
, “
A Method to Predict Position-Dependent Structural Natural Frequencies of Machine Tool
,”
Int. J. Mach. Tools Manuf.
,
92
, pp.
72
84
.
14.
Iglesias
,
A.
,
Taner Tunç
,
L.
,
Özsahin
,
O.
,
Franco
,
O.
,
Munoa
,
J.
, and
Budak
,
E.
,
2022
, “
Alternative Experimental Methods for Machine Tool Dynamics Identification: A Review
,”
Mech. Syst. Signal Proc.
,
170
, p.
108837
.
15.
Tang
,
X.
,
Li
,
Z.
,
Yan
,
R.
,
Peng
,
F.
, and
Fan
,
Z.
,
2023
, “
Operational Impact Excitation Method for Milling Robot End Frequency Response Function Identification Under Movement State and Pose-Dependent Dynamic Compliance Analysis
,”
ASME J. Manuf. Sci. Eng.
,
145
(
3
), p.
034501
.
16.
Tian
,
Y. D.
, and
Zhang
,
J.
,
2020
, “
Structural Flexibility Identification via Moving-Vehicle-Induced Time-Varying Modal Parameters
,”
J. Sound Vibr.
,
474
, p.
20
.
17.
Jin
,
J.
, and
Gans
,
N.
,
2015
, “
Parameter Identification for Industrial Robots With a Fast and Robust Trajectory Design Approach
,”
Rob. Comput. Integr. Manuf.
,
31
, pp.
21
29
.
18.
Atkeson
,
C. G.
,
An
,
C. H.
, and
Hollerbach
,
J. M.
,
1986
, “
Estimation of Inertial Parameters of Manipulator Loads and Links
,”
Int. J. Robot. Res.
,
5
(
3
), pp.
101
119
.
19.
Gautier
,
M.
, and
Khalil
,
W.
,
1988
, “
A Direct Determination of Minimum Inertial Parameters of Robots
,”
1988 IEEE International Conferenceon Robotics and Automation
,
Philadelphia, PA
,
Apr. 24–29
, IEEE, vol. 1683, pp.
1682
1687
.
20.
Wang
,
S.
,
Shao
,
X.
,
Yang
,
L.
, and
Liu
,
N.
,
2020
, “
Deep Learning Aided Dynamic Parameter Identification of 6-DOF Robot Manipulators
,”
IEEE Access
,
8
, pp.
1
1
.
21.
Jung
,
D.
,
Do
,
H.
,
Choi
,
T.
,
Park
,
J.
, and
Cheong
,
J.
,
2021
, “
Robust Parameter Estimation of Robot Manipulators Using Torque Separation Technique
,”
IEEE Access
,
9
, pp.
150443
150458
.
22.
Cordes
,
M.
,
Hintze
,
W.
, and
Altintas
,
Y.
,
2019
, “
Chatter Stability in Robotic Milling
,”
Rob. Comput. Integr. Manuf.
,
55
, pp.
11
18
.
23.
Craig
,
J.
,
2022
,
Introduction to Robotics Mechanics & Control
, 4th ed.,
Pearson, New York
.
24.
Avitabile
,
P.
,
2017
,
Modal Testing: A Practitioner’s Guide
,
Wiley
,
Hoboken, NJ
.
25.
Wu
,
J.
,
Peng
,
F.
,
Tang
,
X.
,
Yan
,
R.
,
Xin
,
S.
, and
Mao
,
X.
,
2022
, “
Characterization of Milling Robot Mode Shape and Analysis of the Weak Parts Causing end Vibration
,”
Measurement
,
203
, p.
111934
.
26.
Strutz
,
T.
,
2015
,
Data Fitting and Uncertainty: A Practical Introduction to Weighted Least Squares and Beyond
, 2nd ed.,
Springer Vieweg Wiesbaden
,
Wiesbaden
.
27.
Tang
,
X. W.
,
Yan
,
R.
,
Peng
,
F. Y.
,
Liu
,
G. Y.
,
Li
,
H.
,
Wei
,
D. Q.
, and
Fan
,
Z.
,
2018
, “
Deformation Error Prediction and Compensation for Robot Multi-Axis Milling
,”
Proceedings of the 11th International Conference on Intelligent Robotics and Applications (ICIRA)
,
Newcastle, NSW, Australia
,
Aug. 9–11
,
Springer International Publishing AG
, pp.
309
318
28.
Qin
,
C.
,
Xiao
,
D.
,
Tao
,
J.
,
Yu
,
H.
,
Jin
,
Y.
,
Sun
,
Y.
, and
Liu
,
C.
,
2022
, “
Concentrated Velocity Synchronous Linear Chirplet Transform With Application to Robotic Drilling Chatter Monitoring
,”
Measurement
,
194
, p.
111090
.
29.
Slamani
,
M.
,
Gauthier
,
S.
, and
Chatelain
,
J.-F.
,
2015
, “
A Study of the Combined Effects of Machining Parameters on Cutting Force Components During High Speed Robotic Trimming of CFRPs
,”
Measurement
,
59
, pp.
268
283
.
30.
Tao
,
J.
,
Qin
,
C.
, and
Liu
,
C.
,
2019
, “
A Synchroextracting-Based Method for Early Chatter Identification of Robotic Drilling Process
,”
Int. J. Adv. Manuf. Technol.
,
100
(
1–4
), pp.
273
285
.
31.
Yuan
,
L.
,
Sun
,
S.
,
Pan
,
Z.
,
Ding
,
D.
,
Gienke
,
O.
, and
Li
,
W.
,
2019
, “
Mode Coupling Chatter Suppression for Robotic Machining Using Semi-Active Magnetorheological Elastomers Absorber
,”
Mech. Syst. Signal Proc.
,
117
, pp.
221
237
.
32.
Tunc
,
L. T.
, and
Gonul
,
B.
,
2021
, “
Effect of Quasi-Static Motion on the Dynamics and Stability of Robotic Milling
,”
CIRP Ann-Manuf. Technol.
,
70
(
1
), pp.
305
308
.
33.
Lax
,
P. D.
, and
Terrell
,
M. S.
,
2013
,
Calculus With Applications
, 2nd ed.,
Springer
,
New York
.
You do not currently have access to this content.