Abstract

Compliant parts have different characteristics from rigid parts and are used frequently in industries. One of the biggest challenges facing by industries is geometric variation management of these compliant parts which can directly impact product quality and functionality. Existing rigid body-based variation modeling approaches are not suitable for compliant assembly while finite element analysis-based methods have the disadvantages of requiring heavy computation efforts and detailed design information which is unavailable during preliminary design phase. Hence, this paper proposes a novel geometric variation propagation model of multi-station compliant assembly based on parametric space envelope. Three sources of variation: location-led positional variation, assembly deformation-induced variation, and station transition caused variation are analyzed. In this study, geometric variations are modeled indirectly through control points of constructed variation tool. Compared with existing methods where geometric variation is modeled by tracking key feature points on the manufacturing part, the proposed approach brings unique benefits. It can deal with arbitrary complex compliant part, and it provides a unified modeling framework for different types of variation. The method is illustrated and verified through a two-station three parts case study on a multi-station compliant panel assembly. The proposed method provides industries with a new way to manage geometric variation from compliant assembly.

References

1.
Ceglarek
,
D.
, and
Shi
,
J.
,
1995
, “
Dimensional Variation Reduction for Automotive Body Assembly
,”
Manuf. Rev.
,
8
(
2
), pp.
139
154
.
2.
Zhong
,
Z.
,
Mou
,
S.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2022
, “
Finite Element Analysis Model-Based Cautious Automatic Optimal Shape Control for Fuselage Assembly
,”
ASME J. Manuf. Sci. Eng.
,
144
(
8
), p.
081009
.
3.
Wang
,
H.
, and
Ceglarek
,
D.
,
2009
, “
Variation Propagation Modeling and Analysis at Preliminary Design Phase for Multi-Station Assembly Systems
,”
Assem. Autom.
,
29
(
2
), pp.
154
166
.
4.
Shi
,
J.
, and
Zhou
,
S.
,
2009
, “
Quality Control and Improvement for Multistage Systems: A Survey
,”
IIE Trans.
,
41
(
9
), pp.
744
753
.
5.
Luo
,
C.
,
Franciosa
,
P.
,
Ceglarek
,
D.
,
Ni
,
Z.
, and
Mo
,
Z.
,
2020
, “
Early Stage Variation Simulation and Visualization of Compliant Part Based on Parametric Space Envelope
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
3
), pp.
1505
1515
.
6.
Luo
,
C.
,
Franciosa
,
P.
,
Mo
,
Z.
, and
Ceglarek
,
D.
,
2020
, “
A Framework for Tolerance Modeling Based on Parametric Space Envelope
,”
ASME J. Manuf. Sci. Eng.
,
142
(
6
), p.
061007
.
7.
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Fixture Failure Diagnosis for the Autobody Assembly Using Pattern Recognition
,”
ASME J. Manuf. Sci. Eng.
,
118
(
1
), pp.
55
66
.
8.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Ceglarek
,
D.
,
2015
, “
Fixture Capability Optimization for Early-Stage Design of Assembly Systems With Compliant Parts Using Nested Polynomial Chaos Expansion
,”
Procedia CIRP
,
41
, pp.
87
92
.
9.
Luo
,
C.
,
Zhu
,
L.
, and
Ding
,
H.
,
2013
, “
A Unified Distance Function Framework for Workpiece Fixturing Modeling and Analysis
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
4
), pp.
1166
1172
.
10.
Ceglarek
,
D.
,
Colledani
,
M.
,
Vancza
,
J.
,
Kim
,
D.-Y.
,
Marine
,
C.
,
Kogel-Hollacher
,
M.
,
Mistry
,
A.
, and
Bolognese
,
L.
,
2015
, “
Rapid Deployment of Remote Laser Welding Processes in Automotive Assembly Systems
,”
CIRP Ann.
,
64
(
1
), pp.
389
394
.
11.
Sadeghi Tabar
,
R.
,
Lorin
,
S.
,
Cromvik
,
C.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Efficient Spot Welding Sequence Simulation in Compliant Variation Simulation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071009
.
12.
Jin
,
J.
, and
Shi
,
J.
,
1999
, “
State Space Modeling of Sheet Metal Assembly for Dimensional Control
,”
ASME J. Manuf. Sci. Eng.
,
121
(
4
), pp.
756
762
.
13.
Huang
,
W.
,
Lin
,
J.
,
Kong
,
Z.
, and
Ceglarek
,
D.
,
2007
, “
Stream-of-Variation (SOVA) Modeling II: A Generic 3D Variation Model for Rigid Body Assembly in Multistation Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
832
842
.
14.
Wang
,
K.
,
Li
,
G.
,
Du
,
S.
,
Xi
,
L.
, and
Xia
,
T.
,
2021
, “
State Space Modelling of Variation Propagation in Multistage Machining Processes for Variable Stiffness Structure Workpieces
,”
Int. J. Prod. Res.
,
59
(
13
), pp.
4033
4052
.
15.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
16.
Liu
,
C.
,
Liu
,
T.
,
Du
,
J.
,
Zhang
,
Y.
,
Lai
,
X.
, and
Shi
,
J.
,
2020
, “
Hybrid Nonlinear Variation Modeling of Compliant Metal Plate Assemblies Considering Welding Shrinkage and Angular Distortion
,”
ASME J. Manuf. Sci. Eng.
,
142
(
4
), p.
041003
.
17.
Ceglarek
,
D.
,
Shi
,
J.
, and
Wu
,
S. M.
,
1994
, “
A Knowledge-Based Diagnosis Approach for the Launch of the Auto-Body Assembly Process
,”
ASME J. Eng. Ind.
,
116
(
4
), pp.
491
499
.
18.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-station Assembly Systems With Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
19.
Ding
,
Y.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
2000
, “
Modeling and Diagnosis of Multistage Manufacturing Processes: Part I State Space Model
,”
Proceedings of the 2000 Japan/USA Symposium on Flexible Automation
,
Ann Arbor, MI
,
July 23–26
, pp.
774
781
.
20.
Mantripragada
,
R.
, and
Whitney
,
D. E.
,
1999
, “
Modeling and Controlling Variation Propagation in Mechanical Assemblies Using State Transition Models
,”
IEEE Trans. Rob. Autom.
,
15
(
1
), pp.
124
140
.
21.
Lawless
,
J. F.
,
Mackay
,
R. J.
, and
Robinson
,
J. A.
,
1999
, “
Analysis of Variation Transmission in Manufacturing Processes—Part I
,”
J. Qual. Technol.
,
31
(
2
), pp.
131
142
.
22.
Li
,
W.
,
Zhang
,
C.
,
Liu
,
C.
, and
Liu
,
X.
,
2022
, “
Error Propagation Model and Optimal Control Method for the Quality of Remanufacturing Assembly
,”
J. Intell. Fuzzy Syst.
,
42
(
3
), pp.
1
15
.
23.
Yacob
,
F.
, and
Semere
,
D.
,
2021
, “
A Multilayer Shallow Learning Approach to Variation Prediction and Variation Source Identification in Multistage Machining Processes
,”
J. Intell. Manuf.
,
32
(
4
), pp.
1173
1187
.
24.
Liu
,
S. C.
,
Hu
,
S. J.
, and
Woo
,
T. C.
,
1996
, “
Tolerance Analysis for Sheet Metal Assemblies
,”
ASME J. Mech. Des.
,
118
(
1
), pp.
62
67
.
25.
Li
,
Z.
,
Kokkolaras
,
M.
,
Papalambros
,
P.
, and
Hu
,
S. J.
,
2008
, “
Product and Process Tolerance Allocation in Multistation Compliant Assembly Using Analytical Target Cascading
,”
ASME J. Mech. Des.
,
130
(
9
), p.
091701
.
26.
Huang
,
W.
, and
Ceglarek
,
D.
,
2002
, “
Mode-Based Decomposition of Part Form Error by Discrete-Cosine-Transform With Implementation to Assembly and Stamping System With Compliant Parts
,”
CIRP Ann.
,
51
(
1
), pp.
21
26
.
27.
Huang
W.
,
Liu
,
J.
,
Chalivendra
,
V.
,
Ceglarek
,
D.
,
Kong
,
Z.
,
Zhou
,
Y.
,
2014
, “
Statistical Modal Analysis (SMA) for Variation Characterization and Application in Manufacturing Quality Control
,”
IIE Trans.
,
46
(
5
), pp.
497
511
28.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1995
, “
Spot Welding Sequence in Sheet Metal Assembly, Its Analysis and Synthesis
,”
ASME J. Manuf. Sci. Eng.
,
2
(
2
), pp.
1145
1156
.
29.
Shahi
,
V. J.
,
Masoumi
,
A.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2020
, “
A Quality-Driven Assembly Sequence Planning and Line Configuration Selection for Non-Ideal Compliant Structures Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
106
(
1–2
), pp.
15
30
.
30.
Camelio
,
J. A.
,
Hu
,
S. J.
, and
Marin
,
S. P.
,
2004
, “
Compliant Assembly Variation Analysis Using Component Geometric Covariance
,”
ASME J. Manuf. Sci. Eng.
,
126
(
2
), pp.
355
360
.
31.
Shi
,
J.
,
2006
,
Stream of Variation Modeling and Analysis for Multistage Manufacturing Processes
,
CRC Press
,
Boca Raton, FL
.
32.
Zhang
,
T.
, and
Shi
,
J.
,
2016
, “
Stream of Variation Modeling and Analysis for Compliant Composite Part Assembly—Part II: Multistation Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121004
.
33.
Jandaghi Shahi
,
V.
, and
Masoumi
,
A.
,
2020
, “
Integration of In-Plane and Out-of-Plane Dimensional Variation in Multi-station Assembly Process for Automotive Body Assembly
,”
Proc. Inst. Mech. Eng. D: J. Automob. Eng.
,
234
(
6
), pp.
1690
1702
.
34.
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2018
,
VRM 3.0 (Variation Response Method)
https://warwick.ac.uk/fac/sci/wmg/research/manufacturing/downloads/
35.
Franciosa
,
P.
,
Palit
,
A.
,
Gerbino
,
A.
, and
Ceglarek
,
D.
,
2019
, “
A Novel Hybrid Shell Element Formulation (QUAD+ and TRIA+): A Benchmarking and Comparative Study
,”
Finite Elem. Anal. Des.
,
166
, p.
103319
.
36.
Luo
,
C.
,
Franciosa
,
P.
,
Ceglarek
,
D.
,
Ni
,
Z.
, and
Jia
,
F.
,
2018
, “
A Novel Geometric Tolerance Modeling Inspired by Parametric Space Envelope
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1386
1398
.
37.
Sederberg
,
T. W.
, and
Parry
,
S. R.
,
1986
, “
Free-Form Deformation of Solid Geometric Models
,”
ACM SIGGRAPH Comput. Graph.
,
20
(
4
), pp.
151
160
.
38.
Shiu
,
B. W.
,
Ceglarek
,
D.
, and
Shi
,
J.
,
1996
, “
Multi-Stations Sheet Metal Assembly Modeling and Diagnostics
,” Transactions-North American Manufacturing Research Institution of SME, pp.
199
204
.
39.
Babu
,
M. K.
,
Franciosa
,
F.
, and
Ceglarek
,
D.
,
2019
, “
Spatio-Temporal Adaptive Sampling for Effective Coverage Measurement Planning During Quality Inspection of Free-Form Surfaces Using Robotic 3D Optical Scanner
,”
J. Manuf. Syst.
,
53
, pp.
93
108
.
40.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2019
, “
Efficient Compliant Variation Simulation of Spot-Welded Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011007
.
41.
Yu
,
H.
,
Zhao
,
C.
, and
Lai
,
X.
,
2018
, “
Compliant Assembly Variation Analysis of Scalloped Segment Plates With a New Irregular Quadrilateral Plate Element Via ANCF
,”
ASME J. Manuf. Sci. Eng.
,
140
(
9
), p.
091006
.
42.
Djurdjanovic
,
D.
,
Mears
,
L.
,
Niaki
,
F. A.
,
Haq
,
A. U.
, and
Li
,
L.
,
2018
, “
State of the Art Review on Process, System, and Operations Control in Modern Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
140
(
6
), p.
061010
.
43.
Kong
,
Z.
,
Ceglarek
,
D.
, and
Huang
,
W.
,
2008
, “
Multiple Fault Diagnosis Method in Multistation Assembly Processes Using Orthogonal Diagonalization Analysis
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011014
.
44.
Ding
,
Y.
,
Shi
,
J.
, and
Ceglarek
,
D.
,
2002
, “
Diagnosability Analysis of Multi-Station Manufacturing Processes
,”
ASME J. Dyn. Syst. Meas. Control
,
124
(
1
), pp.
1
13
.
45.
Sinha
,
S.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2021
, “
Object Shape Error Response Using Bayesian 3D Convolutional Neural Networks for Root Cause Analysis of Manufacturing Systems
,”
IEEE Trans. Ind. Inform.
,
17
(
10
), pp.
6676
6686
.
46.
Xinmin
,
L.
,
Zhaoqing
,
T.
, and
Zhongqin
,
L.
,
2008
, “
A Simplified Method for Optimal Sensor Distribution for Process Fault Diagnosis in Multistation Assembly Processes
,”
ASME J. Manuf. Sci. Eng.
,
130
(
5
), p.
051002
.
47.
Yue
,
X.
,
Wen
,
Y.
,
Hunt
,
J. H.
, and
Shi
,
J.
,
2018
, “
Surrogate Model-Based Control Considering Uncertainties for Composite Fuselage Assembly
,”
ASME J. Manuf. Sci. Eng.
,
140
(
4
), p.
041017
.
48.
Wang
,
Y.
,
Jacobson
,
A.
,
Barbič
,
J.
, and
Kavan
,
L.
,
2015
, “
Linear Subspace Design for Real-Time Shape Deformation
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
11
.
49.
Palomar
,
R.
,
Gómez-Luna
,
J.
,
Cheikh
,
F. A.
,
Olivares-Bueno
,
J.
, and
Elle
,
O. J.
,
2018
, “
High-Performance Computation of Bézier Surfaces on Parallel and Heterogeneous Platforms
,”
Int. J. Parallel Program.
,
46
(
6
), pp.
1035
1062
.
50.
Akenine-Moller
,
T.
,
Haines
,
E.
, and
Hoffman
,
N.
,
2019
,
Real-Time Rendering
,
AK Peters/CRC Press
,
Wellesley, MA
.
51.
Hughes
,
T. J.
,
2012
,
The Finite Element Method: Linear Static and Dynamic Finite Element Analysis
,
Courier Corporation
,
Englewood Cliffs, NJ
.
You do not currently have access to this content.