Graphical Abstract Figure

Launch geometry involved in the deployment of modules onto resident space objects

Graphical Abstract Figure

Launch geometry involved in the deployment of modules onto resident space objects

Close modal

Abstract

This work examines the closed-loop deployment of spacecraft servicing modules onto an uncontrolled bundle of assembly components as a method of gaining custody during the in-space assembly process. Minimum energy, low-thrust relative trajectories are generated using indirect optimal control on linear dynamics over a finite time search horizon. A line search solves for the minimum energy solution in the closed subset that satisfies a keep out zone constraint. A trajectory tracking linear quadratic regulator is used in conjunction with an extended Kalman filter to closed-loop maneuver the spacecraft under nonlinear relative orbital motion dynamics. Bearing angles, range, and range rate measurements are assumed available. Launch ΔV’s from the servicer spacecraft’s deployment of a module and the ΔV’s seen in the relative frame upon impact on the client are included, and their effect on covariance due to impact site uncertainty is investigated. Discussions regarding these GN&C elements’ importance within the context of the manufacturing/assembly process are included.

References

1.
Kalpakjian
,
S.
, and
Schmid
,
S. R.
,
2009
,
Manufacturing Engineering. Technology
,
Prentice Hall
,
London
, pp.
568
571
.
2.
Budynas
,
R. G.
, and
Nisbett
,
J. K.
,
2011
,
Shigley’s Mechanical Engineering Design
, Vol. 9,
McGraw-Hill
,
New York
.
3.
Arney
,
D.
,
Mulvaney
,
J.
,
Williams
,
C.
,
Stockdale
,
C.
,
Gelin
,
N.
, and
le Gouellec
,
P.
,
2023
, “In-Space Servicing, Assembly, and Manufacturing (ISAM),” State of Play-2023 Edition, Consortium for Space Mobility and ISAM Capabilities (COSMIC) Kickoff
4.
Nelson
,
A.
,
Koizumi
,
K.
, and
Uzo-Okoro
,
E.
,
2022
, “In-Space Servicing, Assembly, and Manufacturing National Strategy,” National Science and Technology Council, https://www.whitehouse.gov/wp-content/uploads/2022/04/04-2022-ISAM-National-Strategy-Final.pdf, Retrieved November 6, 2023.
5.
Down
,
I.
, and
Akin
,
D.
,
2022
, “
Novel Structural Connector System for In-Space Assembly of Truss Structures
,”
AIAA SCITECH 2022 Forum
,
San Diego, CA
,
Jan. 3–7
, p.
2607
.
6.
Li
,
W.-J.
,
Cheng
,
D.-Y.
,
Liu
,
X.-G.
,
Wang
,
Y.-B.
,
Shi
,
W.-H.
,
Tang
,
Z.-X.
, and
Gao
,
F.
, et al.,
2019
, “
On-Orbit Service (OOS) of Spacecraft: A Review of Engineering Developments
,”
Prog. Aerosp. Sci.
,
108
, pp.
32
120
.
7.
Gawlik
,
Z.
, and
Rewilak
,
J.
,
1999
, “
Repeatability and Reproducibility (R& R) Studies for the Assessment of Measurement System Capability
,”
Elektrotechnik und Informationstechnik
,
116
, pp.
266
269
.
8.
Alexopoulos
,
K.
,
Anagiannis
,
I.
,
Nikolakis
,
N.
, and
Chryssolouris
,
G.
,
2022
, “
A Quantitative Approach to Resilience in Manufacturing Systems
,”
Int. J. Prod. Res.
,
60
(
24
), pp.
7178
7193
.
9.
Aghili
,
F.
,
2009
, “
Optimal Control of a Space Manipulator for Detumbling of a Target Satellite
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
,
IEEE
, pp.
3019
3024
.
10.
Liu
,
X.-F.
,
Zhang
,
X.-Y.
,
Cai
,
G.-P.
, and
Wang
,
M.-M.
,
2021
, “
A Collision Control Strategy for Detumbling a Non-cooperative Spacecraft by a Robotic Arm
,”
Multibody Syst. Dyn.
,
53
(
3
), pp.
225
255
.
11.
Gangapersaud
,
R. A.
,
Liu
,
G.
, and
de Ruiter
,
A. H.
,
2019
, “
Detumbling of a Non-cooperative Target With Unknown Inertial Parameters Using a Space Robot
,”
Adv. Space Res.
,
63
(
12
), pp.
3900
3915
.
12.
Yang
,
G.
,
Liu
,
Y.
,
Jin
,
M.
, and
Liu
,
H.
,
2019
, “
A Robust and Adaptive Control Method for Flexible-Joint Manipulator Capturing a Tumbling Satellite
,”
IEEE Access
,
7
, pp.
159971
159985
.
13.
Bennett
,
T.
, and
Schaub
,
H.
,
2015
, “
Touchless Electrostatic Three-Dimensional Detumbling of Large Axi-symmetric Debris
,”
J. Astronaut. Sci.
,
62
, pp.
233
253
.
14.
O’Connor
,
W. J.
, and
Hayden
,
D. J.
,
2017
, “
Detumbling of Space Debris by a Net and Elastic Tether
,”
J. Guid. Control Dyn.
,
40
(
7
), pp.
1832
1836
.
15.
Peters
,
T. V.
, and
Escorial Olmos
,
D.
,
2016
, “
COBRA Contactless Detumbling
,”
CEAS Space J.
,
8
, pp.
143
165
.
16.
Down
,
I. M.
, and
Majji
,
M.
,
2023
, “
Adaptive Detumbling of Uncontrolled Flat Spinning Spacecraft Using Finite Module Deposition
,”
Proceedings of the AAS Rocky Mountain GN&C Conference
,
Breckenridge, CO
,
Feb. 2–8
.
17.
Parikh
,
D.
,
Khowaja
,
A. H. A.
,
Long
,
N.
,
Down
,
I. M.
,
McElreath
,
J.
,
Bire
,
A.
, and
Majji
,
M.
,
2023
, “
A Scalable Tabletop Satellite Automation Testbed: Design and Experiments
,”
Proceedings of the AAS Rocky Mountain GN&C Conference
,
Breckenridge, CO
,
Feb. 2–8
.
18.
Khowaja
,
A. H. A.
,
Parikh
,
D.
,
Down
,
I. M.
, and
Majji
,
M.
,
2024
, “
Sensor Fusion of Monocular Cameras and Inertial Measurement Units for Free-Flyers: Applications to Spacecraft Servicing, Assembly and Manufacturing
,”
Proceedings of the AAS Rocky Mountain GN&C Conference
,
Breckenridge, CO
,
Feb. 2–7
.
19.
Parikh
,
D.
, and
Majji
,
M.
,
2023
, “
Estimation of Inertial Properties of a Rigid Structure Maneuvered by Satellite Modules
,”
Proceedings of the AAS Rocky Mountain GN&C Conference
,
Breckenridge, CO
,
Feb. 2–8
.
20.
Parness
,
A.
,
2017
, “
Testing Gecko-Like Adhesives Aboard the International Space Station
,”
AIAA SPACE and Astronautics Forum and Exposition
,
Orlando, FL
,
Sept. 12–14
, p.
5181
.
21.
Mantoux
,
P.
,
2013
,
The Industrial Revolution in the Eighteenth Century: An Outline of the Beginnings of the Modern Factory System in England
,
Routledge
,
London
.
22.
Bennett
,
S.
,
1993
,
A History of Control Engineering, 1930–1955
,
IET
,
London
, p.
47
.
23.
Maxwell
,
J. C.
,
1868
, “
I. On Governors
,”
Proc. R. Soc. Lond.
,
16
, pp.
270
283
.
24.
Alfriend
,
K.
,
Vadali
,
S. R.
,
Gurfil
,
P.
,
How
,
J.
, and
Breger
,
L.
,
2009
,
Spacecraft Formation Flying: Dynamics, Control and Navigation
, Vol. 2,
Elsevier
,
Oxford
.
25.
Clohessy
,
W.
, and
Wiltshire
,
R.
,
1960
, “
Terminal Guidance System for Satellite Rendezvous
,”
J. Aerosp. Sci.
,
27
(
9
), pp.
653
658
.
26.
Schaub
,
H.
, and
Junkins
,
J. L.
,
2003
,
Analytical Mechanics of Space Systems
,
AIAA
,
Reston, VA
.
27.
Lovell
,
T. A.
, and
Tragesser
,
S.
,
2004
, “
Guidance for Relative Motion of Low Earth Orbit Spacecraft Based on Relative Orbit Elements
,”
AIAA/AAS Astrodynamics Specialist Conference and Exhibit
,
Providence, RI
,
Aug. 16–19
, p.
4988
.
28.
Weiss
,
A.
,
Danielson
,
C.
,
Berntorp
,
K.
,
Kolmanovsky
,
I.
, and
Di Cairano
,
S.
,
2017
, “
Motion Planning With Invariant Set Trees
,”
2017 IEEE Conference on Control Technology and Applications (CCTA)
,
Maui, HI
,
Aug. 27–30
,
IEEE
, pp.
1625
1630
.
29.
Weiss
,
A.
,
Kolmanovsky
,
I.
,
Baldwin
,
M.
, and
Erwin
,
R. S.
,
2012
, “
Model Predictive Control of Three Dimensional Spacecraft Relative Motion
,”
2012 American Control Conference (ACC)
,
Montreal, Canada
,
June 27–29
,
IEEE
, pp.
173
178
.
30.
Frey
,
G. R.
,
Petersen
,
C. D.
,
Leve
,
F. A.
,
Kolmanovsky
,
I. V.
, and
Girard
,
A. R.
,
2017
, “
Constrained Spacecraft Relative Motion Planning Exploiting Periodic Natural Motion Trajectories and Invariance
,”
J. Guid. Control Dyn.
,
40
(
12
), pp.
3100
3115
.
31.
Peck
,
C.
,
2023
, “
Adaptive Collocation Methods Using Chebyshev Integration
,” Ph.D. thesis, Texas A&M University, College Station, TX.
32.
Peck
,
C. H.
,
Down
,
I. M.
, and
Majji
,
M.
,
2023
, “
Constrained Optimal Reconfiguration of Distributed Satellite Servicing Modules
,”
Proceedings of the AAS Rocky Mountain GN&C Conference
,
Breckenridge, CO
,
Feb. 2–8
.
33.
Bryson
,
A.
,
2018
,
Applied Optimal Control: Optimization, Estimation and Control
,
CRC Press
,
New York
.
34.
Butcher
,
E. A.
,
Wang
,
J.
, and
Lovell
,
T. A.
,
2017
, “
On Kalman Filtering and Observability in Nonlinear Sequential Relative Orbit Estimation
,”
J. Guid. Control Dyn.
,
40
(
9
), pp.
2167
2182
.
35.
Adams
,
D.
, and
Majji
,
M.
,
2022
, “
Velocimeter Lidar-Based Relative Rate Estimation for Autonomous Rendezvous, Proximity Operations, and Docking Applications
,”
44th Annual AAS Guidance, Navigation and Control Conference
,
Breckenridge, CO
,
Feb. 4–9
, pp.
1661
1675
.
36.
Kisantal
,
M.
,
Sharma
,
S.
,
Park
,
T. H.
,
Izzo
,
D.
,
Mörtens
,
M.
, and
D’Amico
,
S.
,
2020
, “
Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results
,”
IEEE Trans. Aerosp. Electron. Syst.
,
56
(
5
), pp.
4083
4098
.
37.
Crassidis
,
J. L.
, and
Junkins
,
J. L.
,
2004
, “Optimal Estimation of Dynamic Systems,”
38.
Markley
,
F. L.
,
2003
, “
Attitude Error Representations for Kalman Filtering
,”
J. Guid. Control Dyn.
,
26
(
2
), pp.
311
317
.
39.
Kriegsman
,
B. A.
, and
Tao
,
Y.-C.
,
1975
, “
Shuttle Navigation System for Entry and Landing Mission Phases
,”
J. Spacecr. Rock.
,
12
(
4
), pp.
213
219
.
You do not currently have access to this content.