Abstract

Product disassembly plays a crucial role in the recycling, remanufacturing, and reuse of end-of-use (EoU) products. However, the current manual disassembly process is inefficient due to the complexity and variation of EoU products. While fully automating disassembly is not economically viable given the intricate nature of the task, there is potential in using human–robot collaboration (HRC) to enhance disassembly operations. HRC combines the flexibility and problem-solving abilities of humans with the precise repetition and handling of unsafe tasks by robots. Nevertheless, numerous challenges persist in technology, human workers, and remanufacturing work, which require comprehensive multidisciplinary research to address critical gaps. These challenges have motivated the authors to provide a detailed discussion on the opportunities and obstacles associated with introducing HRC to disassembly. In this regard, the authors have conducted a review of the recent progress in HRC disassembly and present the insights gained from this analysis from three distinct perspectives: technology, workers, and work.

References

1.
Dornfeld
,
D. A.
,
2012
,
Green Manufacturing: Fundamentals and Applications
,
Springer Science & Business Media
,
New York
.
2.
Lund
,
R. T.
,
1996
,
The Remanufacturing Industry: Hidden Giant
,
Boston University
,
Boston, MA
.
3.
Fan
,
C.
,
Guo
,
X.
,
Wang
,
J.
,
Qi
,
L.
,
Qin
,
S.
, and
Xu
,
G.
,
2022
, “
Multi-Objective Shuffled Frog Leading Algorithm for Human-Robot Collaborative Disassembly Line Balancing Problems
,”
Proceedings Volume 12161, 4th International Conference on Informatics Engineering & Information Science (ICIEIS2021)
,
Tianjin, China
,
Feb. 14
, SPIE, pp.
79
89
.
4.
Lee
,
M.-L.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2020
, “
Disassembly Sequence Planning Considering Human-Robot Collaboration
,”
2020 American Control Conference (ACC)
,
Denver, CO
,
July 1–3
, pp.
2438
2443
.
5.
Lee
,
M.-L.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2020
, “
A Real-Time Receding Horizon Sequence Planner for Disassembly in a Human-Robot Collaboration Setting
,”
Proceedings of the 2020 International Symposium on Flexible Automation. 2020 International Symposium on Flexible Automation
,
Virtual
,
July 8–9
,
ASME, p. V001T04A004
.
6.
Huang
,
J.
,
Pham
,
D. T.
,
Li
,
R.
,
Qu
,
M.
,
Wang
,
Y.
,
Kerin
,
M.
, and
Su
,
S.
, et al.
2021
, “
An Experimental Human-Robot Collaborative Disassembly Cell
,”
Computers Ind. Eng.
,
155
, p.
107189
.
7.
Parsa
,
S.
, and
Saadat
,
M.
,
2021
, “
Human-Robot Collaboration Disassembly Planning for End-of-Life Product Disassembly Process
,”
Rob. Computer-Integrated Manuf.
,
71
, p.
102170
.
8.
Liu
,
Q.
,
Liu
,
Z.
,
Xu
,
W.
,
Tang
,
Q.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2019
, “
Human-Robot Collaboration in Disassembly for Sustainable Manufacturing
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
4027
4044
.
9.
Li
,
K.
,
Liu
,
Q.
,
Xu
,
W.
,
Liu
,
J.
,
Zhou
,
Z.
, and
Feng
,
H.
,
2019
, “
Sequence Planning Considering Human Fatigue for Human-Robot Collaboration in Disassembly
,”
Procedia CIRP
,
83
, pp.
95
104
.
10.
Xu
,
W.
,
Tang
,
Q.
,
Liu
,
J.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2020
, “
Disassembly Sequence Planning Using Discrete Bees Algorithm for Human-Robot Collaboration in Remanufacturing
,”
Rob. Computer-Integrated Manuf.
,
62
, p.
101860
.
11.
Chatzikonstantinou
,
I.
,
Giakoumis
,
D.
, and
Tzovaras
,
D.
,
2019
, “
A New Shopfloor Orchestration Approach for Collaborative Human-Robot Device Disassembly
,”
2019 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI)
,
Leicester, UK
,
Aug. 19–23
, pp.
225
230
.
12.
Xu
,
W.
,
Cui
,
J.
,
Liu
,
B.
,
Liu
,
J.
,
Yao
,
B.
, and
Zhou
,
Z.
,
2021
, “
Human-Robot Collaborative Disassembly Line Balancing Considering the Safe Strategy in Remanufacturing
,”
J. Cleaner. Prod.
,
324
, p.
129158
.
13.
Huang
,
J.
,
Pham
,
D. T.
,
Wang
,
Y.
,
Qu
,
M.
,
Ji
,
C.
,
Su
,
S.
,
Xu
,
W.
,
Liu
,
Q.
, and
Zhou
,
Z.
,
2020
, “
A Case Study in Human–Robot Collaboration in the Disassembly of Press-Fitted Components
,”
Proc. Inst. Mech. Eng. B.
,
234
(
3
), pp.
654
664
.
14.
Lee
,
M.-L.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2022
, “
Task Allocation and Planning for Product Disassembly With Human–Robot Collaboration
,”
Rob. Computer-Integrated Manuf.
,
76
, p.
102306
.
15.
Liu
,
B.
,
Xu
,
W.
,
Liu
,
J.
,
Yao
,
B.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2019
, “
Human-Robot Collaboration for Disassembly Line Balancing Problem in Remanufacturing
,”
Proceedings of the ASME 2019 14th International Manufacturing Science and Engineering Conference. Volume 1: Additive Manufacturing; Manufacturing Equipment and Systems; Bio and Sustainable Manufacturing
,
Erie, PA
,
June 10–14
,
ASME, p. V001T02A037
.
16.
Esmaeilian
,
B.
,
Behdad
,
S.
, and
Wang
,
B.
,
2016
, “
The Evolution and Future of Manufacturing: A Review
,”
J. Manuf. Syst.
,
39
, pp.
79
100
.
17.
Lambert
,
A. J.
,
2007
, “
Optimizing Disassembly Processes Subjected to Sequence-Dependent Cost
,”
Computers Operations Res.
,
34
(
2
), pp.
536
551
.
18.
Mashhadi
,
A. R.
,
Esmaeilian
,
B.
, and
Behdad
,
S.
,
2015
, “
Uncertainty Management in Remanufacturing Decisions: A Consideration of Uncertainties in Market Demand, Quantity, and Quality of Returns
,”
ASCE-ASME J. Risk Uncert Eng. Syst. Part B Mech. Eng.
,
1
(
2
), p.
021007
.
19.
Giutini
,
R.
, and
Gaudette
,
K.
,
2003
, “
Remanufacturing: The Next Great Opportunity for Boosting Us Productivity
,”
Business Horizons
,
46
(
6
), pp.
41
48
.
20.
Behdad
,
S.
,
Williams
,
A. S.
, and
Thurston
,
D.
,
2012
, “
End-of-Life Decision Making With Uncertain Product Return Quantity
,”
ASME J. Mech. Des.
,
134
(
10
), p.
100902
.
21.
Huo
,
X.
,
Peng
,
L.
,
Xu
,
X.
,
Zheng
,
L.
,
Qiu
,
B.
,
Qi
,
Z.
,
Zhang
,
B.
,
Han
,
D.
, and
Piao
,
Z.
,
2007
, “
Elevated Blood Lead Levels of Children in Guiyu, an Electronic Waste Recycling Town in China
,”
Environ. Health. Perspect.
,
115
(
7
), pp.
1113
1117
.
22.
Wang
,
Y.
,
Sun
,
X.
,
Fang
,
L.
,
Li
,
K.
,
Yang
,
P.
,
Du
,
L.
, and
Ji
,
K.
, et al.
2018
, “
Genomic Instability in Adult Men Involved in Processing Electronic Waste in Northern China
,”
Environ. Int.
,
117
, pp.
69
81
.
23.
Zhang
,
Y.
,
Xu
,
X.
,
Chen
,
A.
,
Davuljigari
,
C. B.
,
Zheng
,
X.
,
Kim
,
S. S.
,
Dietrich
,
K. N.
,
Ho
,
S.-M.
,
Reponen
,
T.
, and
Huo
,
X.
,
2018
, “
Maternal Urinary Cadmium Levels During Pregnancy Associated With Risk of Sex-Dependent Birth Outcomes From an E-waste Pollution Site in China
,”
Reprod. Toxicol.
,
75
, pp.
49
55
.
24.
Cesta
,
A.
,
Orlandini
,
A.
,
Bernardi
,
G.
, and
Umbrico
,
A.
,
2016
, “
Towards a Planning-Based Framework for Symbiotic Human–Robot Collaboration
,”
2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Berlin, Germany
,
Sept. 6–9
, pp.
1
8
.
25.
Poschmann
,
H.
,
Brueggemann
,
H.
, and
Goldmann
,
D.
,
2020
, “
Disassembly 4.0: A Review on Using Robotics in Disassembly Tasks as a Way of Automation
,”
Chem. Ing. Tech.
,
92
(
4
), pp.
341
359
.
26.
Hjorth
,
S.
, and
Chrysostomou
,
D.
,
2022
, “
Human–Robot Collaboration in Industrial Environments: A Literature Review on Non-Destructive Disassembly
,”
Rob. Computer-Integrated Manuf.
,
73
, p.
102208
.
27.
Lee
,
M.-L.
,
Liu
,
W.
,
Behdad
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2023
, “
Robot-Assisted Disassembly Sequence Planning With Real-Time Human Motion Prediction
,”
IEEE. Trans. Syst. Man. Cybernet.: Syst.
,
53
(
1
), pp.
438
450
.
28.
Xu
,
C.
,
Wei
,
H.
,
Guo
,
X.
,
Liu
,
S.
,
Qi
,
L.
, and
Zhao
,
Z.
,
2020
, “
Human-Robot Collaboration Multi-Objective Disassembly Line Balancing Subject to Task Failure via Multi-Objective Artificial Bee Colony Algorithm
,”
IFAC-PapersOnLine
,
53
(
5
), pp.
1
6
.
29.
Yin
,
T.
,
Zhang
,
Z.
,
Zhang
,
Y.
,
Wu
,
T.
, and
Liang
,
W.
,
2022
, “
Mixed-Integer Programming Model and Hybrid Driving Algorithm for Multi-Product Partial Disassembly Line Balancing Problem With Multi-Robot Workstations
,”
Robot. Computer-Integrated Manuf.
,
73
, p.
102251
.
30.
Li
,
R.
,
Pham
,
D. T.
,
Huang
,
J.
,
Tan
,
Y.
,
Qu
,
M.
,
Wang
,
Y.
, and
Kerin
,
M.
, et al.
2020
, “
Unfastening of Hexagonal Headed Screws by a Collaborative Robot
,”
IEEE Trans. Automation Sci. Eng.
,
17
(
3
), pp.
1455
1468
.
31.
Ding
,
Y.
,
Xu
,
W.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Pham
,
D. T.
,
2019
, “
Robotic Task Oriented Knowledge Graph for Human-Robot Collaboration in Disassembly
,”
Procedia CIRP
,
83
, pp.
105
110
.
32.
Corrales
,
J.
,
Gomez
,
G. G.
,
Torres
,
F.
, and
Perdereau
,
V.
,
2012
, “
Cooperative Tasks Between Humans and Robots in Industrial Environments
,”
Int. J. Adv. Rob. Syst.
,
9
(
3
), p.
94
.
33.
Gerbers
,
R.
,
Wegener
,
K.
,
Dietrich
,
F.
, and
Dröder
,
K.
,
2018
, “Safe, Flexible and Productive Human-Robot-Collaboration for Disassembly of Lithium-Ion Batteries,”
Recycling of Lithium-Ion Batteries
,
A.
Kwade
and
J.
Diekmann
, eds.,
Springer
,
Cham
, pp.
99
126
.
34.
Chu
,
M.
, and
Chen
,
W.
,
2023
, “
Human-Robot Collaboration Disassembly Planning for End-of-Life Power Batteries
,”
J. Manuf. Syst.
,
69
, pp.
271
291
.
35.
Liao
,
H.-y.
,
Chen
,
Y.
,
Hu
,
B.
, and
Behdad
,
S.
,
2023
, “
Optimization-Based Disassembly Sequence Planning Under Uncertainty for Human–Robot Collaboration
,”
ASME J. Mech. Des.
,
145
(
2
), p.
022001
.
36.
Guo
,
L.
,
Zhang
,
Z.
, and
Zhang
,
X.
,
2023
, “
Human–Robot Collaborative Partial Destruction Disassembly Sequence Planning Method for End-of-Life Product Driven by Multi-Failures
,”
Adv. Eng. Inform.
,
55
, p.
101821
.
37.
Belhadj
,
I.
,
Aicha
,
M.
, and
Aifaoui
,
N.
,
2022
, “
Product Disassembly Planning and Task Allocation Based on Human and Robot Collaboration
,”
Int. J. Interactive Design Manuf. (IJIDeM)
,
16
(
2
), pp.
803
819
.
38.
Yeh
,
W.-C.
,
2011
, “
Optimization of the Disassembly Sequencing Problem on the Basis of Self-Adaptive Simplified Swarm Optimization
,”
IEEE Trans. Syst. Man Cybernetics Part A: Systems Humans
,
42
(
1
), pp.
250
261
.
39.
Xia
,
K.
,
Gao
,
L.
,
Wang
,
L.
,
Li
,
W.
,
Li
,
X.
, and
Ijomah
,
W.
,
2016
, “
Service-Oriented Disassembly Sequence Planning for Electrical and Electronic Equipment Waste
,”
Electronic Commerce Res. Appl.
,
20
, pp.
59
68
.
40.
Jin
,
G.
,
Li
,
W.
,
Wang
,
S.
, and
Lu
,
X.
,
2014
, “
Solution Space Generation for Disassembly Research on Liquid Crystal Displays Televisions
,”
Proceedings of the 2014 IEEE 18th International Conference on Computer Supported Cooperative Work in Design (CSCWD)
,
Hsinchu, Taiwan
,
May 21–23
, pp.
35
40
.
41.
Alshibli
,
M.
,
El Sayed
,
A.
,
Kongar
,
E.
,
Sobh
,
T. M.
, and
Gupta
,
S. M.
,
2016
, “
Disassembly Sequencing Using Tabu Search
,”
J. Intell. Rob. Syst.
,
82
(
1
), pp.
69
79
.
42.
Zhao
,
S.-E.
,
Li
,
Y.-I.
,
Fu
,
R.
, and
Yuan
,
W.
,
2014
, “
Fuzzy Reasoning Petri Nets and Its Application to Disassembly Sequence Decision-Making for the End-of-Life Product Recycling and Remanufacturing
,”
Int. J. Computer Integrated Manuf.
,
27
(
5
), pp.
415
421
.
43.
Tian
,
G.
,
Zhou
,
M.
, and
Chu
,
J.
,
2013
, “
A Chance Constrained Programming Approach to Determine the Optimal Disassembly Sequence
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
4
), pp.
1004
1013
.
44.
Luo
,
Y.
, and
Peng
,
Q.
,
2012
, “
Disassembly Sequence Planning for Product Maintenance
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 6th International Conference on Micro- and Nanosystems; 17th Design for Manufacturing and the Life Cycle Conference
,
Chicago, IL
,
Aug. 12–15
,
ASME, pp. 601–609
.
45.
Smith
,
S.
,
Hsu
,
L.-Y.
, and
Smith
,
G. C.
,
2016
, “
Partial Disassembly Sequence Planning Based on Cost-Benefit Analysis
,”
J. Cleaner. Prod.
,
139
, pp.
729
739
.
46.
Xia
,
K.
,
Gao
,
L.
,
Li
,
W.
,
Wang
,
L.
, and
Chao
,
K.-M.
,
2014
, “
A Q-learning Based Selective Disassembly Planning Service in the Cloud Based Remanufacturing System for Weee
,”
Proceedings of the ASME 2014 International Manufacturing Science and Engineering Conference collocated with the JSME 2014 International Conference on Materials and Processing and the 42nd North American Manufacturing Research Conference. Volume 1: Materials; Micro and Nano Technologies; Properties, Applications and Systems; Sustainable Manufacturing
,
Detroit, MI
,
June 9–13
,
ASME, V001T04A012
.
47.
Zhong
,
L.
,
Youchao
,
S.
,
Gabriel
,
O. E.
, and
Haiqiao
,
W.
,
2011
, “
Disassembly Sequence Planning for Maintenance Based on Metaheuristic Method
,”
Aircraft Eng. Aerospace Technol.
,
83
(
3
), pp.
138
145
.
48.
Behdad
,
S.
,
Kwak
,
M.
,
Kim
,
H.
, and
Thurston
,
D.
,
2010
, “
Simultaneous Selective Disassembly and End-of-Life Decision Making for Multiple Products that Share Disassembly Operations
,”
ASME J. Mech. Des.
,
132
(
4
), p.
041002
.
49.
Meng
,
K.
,
Lou
,
P.
,
Peng
,
X.
, and
Prybutok
,
V.
,
2016
, “
An Improved Co-Evolutionary Algorithm for Green Manufacturing by Integration of Recovery Option Selection and Disassembly Planning for End-of-Life Products
,”
Int. J. Prod. Res.
,
54
(
18
), pp.
5567
5593
.
50.
Bahubalendruni
,
M. R.
, and
Varupala
,
V. P.
,
2021
, “
Disassembly Sequence Planning for Safe Disposal of End-of-Life Waste Electric and Electronic Equipment
,”
Natl. Acad. Sci. Lett.
,
44
(
3
), pp.
243
247
.
51.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (ECMPRO): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
591
.
52.
Ilgin
,
M. A.
,
Gupta
,
S. M.
, and
Battaïa
,
O.
,
2015
, “
Use of Mcdm Techniques in Environmentally Conscious Manufacturing and Product Recovery: State of the Art
,”
J. Manuf. Syst.
,
37
, pp.
746
758
.
53.
Guo
,
X.
,
Zhou
,
M.
,
Abusorrah
,
A.
,
Alsokhiry
,
F.
, and
Sedraoui
,
K.
,
2020
, “
Disassembly Sequence Planning: A Survey
,”
IEEE/CAA J. Automatica Sinica
,
8
(
7
), pp.
1308
1324
.
54.
Zhou
,
Z.
,
Liu
,
J.
,
Pham
,
D. T.
,
Xu
,
W.
,
Ramirez
,
F. J.
,
Ji
,
C.
, and
Liu
,
Q.
,
2019
, “
Disassembly Sequence Planning: Recent Developments and Future Trends
,”
Proc. Inst. Mech. Eng. B.
,
233
(
5
), pp.
1450
1471
.
55.
Yu
,
J.
,
Zhang
,
H.
,
Jiang
,
Z.
,
Yan
,
W.
,
Wang
,
Y.
, and
Zhou
,
Q.
,
2022
, “
Disassembly Task Planning for End-of-Life Automotive Traction Batteries Based on Ontology and Partial Destructive Rules
,”
J. Manuf. Syst.
,
62
, pp.
347
366
.
56.
Ali
,
A.
,
Enyoghasi
,
C.
, and
Badurdeen
,
F.
,
2022
, “A Quantitative Approach for Product Disassemblability Assessment,”
Role of Circular Economy in Resource Sustainability
,
P.
Ghadimi
,
M.D.
Gilchrist
, and
M.
Xu
, eds.,
Springer
,
Cham
, pp.
73
84
.
57.
Behdad
,
S.
, and
Thurston
,
D.
,
2010
, “
Disassembly Process Planning Tradeoffs for Product Maintenance
,”
Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 6: 15th Design for Manufacturing and the Lifecycle Conference; 7th Symposium on International Design and Design Education
,
Montreal, Quebec, Canada
,
Aug. 15–18
,
ASME, pp. 427–434
.
58.
Behdad
,
S.
, and
Thurston
,
D.
,
2012
, “
Disassembly and Reassembly Sequence Planning Tradeoffs Under Uncertainty for Product Maintenance
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041011
.
59.
Kuo
,
T. C.
, and
Wang
,
M.-L.
,
2010
, “
Waste Electronics and Electrical Equipment Disassembly and Recycling Using Petri Net Analysis
,”
The 40th International Conference on Computers & Indutrial Engineering
,
Awaji, Japan
,
July 25–28
, pp.
1
6
.
60.
Song
,
S.-H.
,
Hu
,
D.
,
Gao
,
X.
,
Yang
,
M.
, and
Zhang
,
L.
,
2010
, “
Product Disassembly Sequence Planning Based on Constraint Satisfaction Problems
,”
China Mech. Eng.
,
21
(
17
), p.
2058
.
61.
Min
,
S.-S.
,
Zhu
,
X.-J.
, and
Zhu
,
X.
,
2010
, “
Mechanical Product Disassembly and/or Graph Construction
,”
2010 International Conference on Measuring Technology and Mechatronics Automation
,
Changsha, China
,
Mar. 13–14
, pp.
627
631
.
62.
MIN
,
S.-S.
,
ZHU
,
X.-J.
, and
ZHU
,
X.
,
2010
, “
Research on Disassembly and/or Graph Construction and Uncertain Weight
,”
Chinese J. Eng. Design
,
17
(
1
), pp.
19
24
.
63.
Tseng
,
Y.-J.
,
Kao
,
H.-T.
, and
Huang
,
F.-Y.
,
2010
, “
Integrated Assembly and Disassembly Sequence Planning Using a GA Approach
,”
Int. J. Prod. Res.
,
48
(
20
), pp.
5991
6013
.
64.
Xia
,
K.
,
Gao
,
L.
,
Li
,
W.
, and
Chao
,
K.-M.
,
2019
, “Disassembly Sequence Planning Using a Simplified Teaching-Learning-Based Optimization Algorithm,”
Sustainable Manufacturing and Remanufacturing Management
,
W.
Li
, and
S.
Wang
, eds.,
Springer
,
Cham
, pp.
319
343
.
65.
Guo
,
X.
,
Liu
,
S.
,
Zhou
,
M.
, and
Tian
,
G.
,
2017
, “
Dual-Objective Program and Scatter Search for the Optimization of Disassembly Sequences Subject to Multiresource Constraints
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1091
1103
.
66.
Mutlu
,
S.
, and
Güner
,
B.
,
2021
, “
A Memetic Algorithm for Mixed-Model Two-Sided Disassembly Line Balancing Problem
,”
Procedia CIRP
,
98
, pp.
67
72
.
67.
Giudice
,
F.
,
2010
, “
Disassembly Depth Distribution for Ease of Service: A Rule-Based Approach
,”
J. Eng. Design
,
21
(
4
), pp.
375
411
.
68.
Kuo
,
T. C.
,
2013
, “
Waste Electronics and Electrical Equipment Disassembly and Recycling Using Petri Net Analysis: Considering the Economic Value and Environmental Impacts
,”
Comput. Ind. Eng.
,
65
(
1
), pp.
54
64
.
69.
Guo
,
X.
,
Liu
,
S.
,
Zhou
,
M.
, and
Tian
,
G.
,
2015
, “
Disassembly Sequence Optimization for Large-Scale Products With Multiresource Constraints Using Scatter Search and Petri Nets
,”
IEEE Trans. Cybernetics
,
46
(
11
), pp.
2435
2446
.
70.
Smith
,
S. S.
, and
Chen
,
W.-H.
,
2011
, “
Rule-Based Recursive Selective Disassembly Sequence Planning for Green Design
,”
Adv. Eng. Inform.
,
25
(
1
), pp.
77
87
.
71.
Smith
,
S.
, and
Chen
,
W.-H.
,
2012
, “
Multiple-Target Selective Disassembly Sequence Planning With Disassembly Sequence Structure Graphs
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 3: 38th Design Automation Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
,
ASME, pp. 1305–1314
.
72.
Peng
,
Q.
,
Kang
,
X.
, and
Chung
,
C.
,
2011
, “
Selective Disassembly Planning for Product Maintenance and Recycle
,”
Int. J. Eng. Simul.
,
12
(
1
), pp.
5
14
.
73.
ElSayed
,
A.
,
Kongar
,
E.
,
Gupta
,
S. M.
, and
Sobh
,
T.
,
2012
, “
A Robotic-Driven Disassembly Sequence Generator for End-of-Life Electronic Products
,”
J. Intell. Rob. Syst.
,
68
(
1
), pp.
43
52
.
74.
Han
,
H.-J.
,
Yu
,
J.-M.
, and
Lee
,
D.-H.
,
2013
, “
Mathematical Model and Solution Algorithms for Selective Disassembly Sequencing With Multiple Target Components and Sequence-Dependent Setups
,”
Int. J. Prod. Res.
,
51
(
16
), pp.
4997
5010
.
75.
Mitrouchev
,
P.
,
Wang
,
C.
,
Lu
,
L.
, and
Li
,
G.
,
2015
, “
Selective Disassembly Sequence Generation Based on Lowest Level Disassembly Graph Method
,”
Int. J. Adv. Manuf. Technol.
,
80
(
1
), pp.
141
159
.
76.
Zhang
,
X. F.
, and
Zhang
,
S. Y.
,
2010
, “
Product Cooperative Disassembly Sequence Planning Based on Branch-and-Bound Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
51
(
9
), pp.
1139
1147
.
77.
Zhu
,
B.
,
Sarigecili
,
M. I.
, and
Roy
,
U.
,
2013
, “
Disassembly Information Model Incorporating Dynamic Capabilities for Disassembly Sequence Generation
,”
Rob. Computer-Integrated Manuf.
,
29
(
5
), pp.
396
409
.
78.
Zhang
,
X. F.
,
Yu
,
G.
,
Hu
,
Z. Y.
,
Pei
,
C. H.
, and
Ma
,
G. Q.
,
2014
, “
Parallel Disassembly Sequence Planning for Complex Products Based on Fuzzy-Rough Sets
,”
Int. J. Adv. Manuf. Technol.
,
72
(
1
), pp.
231
239
.
79.
Ma
,
Y.-S.
,
Jun
,
H.-B.
,
Kim
,
H.-W.
, and
Lee
,
D.-H.
,
2011
, “
Disassembly Process Planning Algorithms for End-of-Life Product Recovery and Environmentally Conscious Disposal
,”
Int. J. Prod. Res.
,
49
(
23
), pp.
7007
7027
.
80.
Prioli
,
J. P. J.
,
Alrufaifi
,
H. M.
, and
Rickli
,
J. L.
,
2022
, “
Disassembly Assessment From CAD-Based Collision Evaluation for Sequence Planning
,”
Rob. Computer-Integrated Manuf.
,
78
, p.
102416
.
81.
Upadhyay
,
A.
,
Ladrecha
,
B.
,
Dubey
,
A.
,
Kuriakose
,
S. M.
, and
Goenka
,
P.
,
2023
, “3d-pdnet: Automated Product Disassembly Sequence Planning.”
82.
Go
,
T.
,
Wahab
,
D.
,
Rahman
,
M. A.
,
Ramli
,
R.
, and
Hussain
,
A.
,
2012
, “
Genetically Optimised Disassembly Sequence for Automotive Component Reuse
,”
Expert. Syst. Appl.
,
39
(
5
), pp.
5409
5417
.
83.
Kheder
,
M.
,
Trigui
,
M.
, and
Aifaoui
,
N.
,
2015
, “
Disassembly Sequence Planning Based on a Genetic Algorithm
,”
Proc. Inst. Mech. Eng., Part C: J. Mechanic. Eng. Sci.
,
229
(
12
), pp.
2281
2290
.
84.
Kucukkoc
,
I.
,
2020
, “
Balancing of Two-Sided Disassembly Lines: Problem Definition, Milp Model and Genetic Algorithm Approach
,”
Computers Oper. Res.
,
124
, p.
105064
.
85.
Percoco
,
G.
, and
Diella
,
M.
,
2013
, “
Preliminary Evaluation of Artificial Bee Colony Algorithm When Applied to Multi Objective Partial Disassembly Planning
,”
Res. J. Appl. Sci., Eng. Technol.
,
6
(
17
), pp.
3234
3243
.
86.
Liu
,
J.
,
Zhou
,
Z.
,
Pham
,
D. T.
,
Xu
,
W.
,
Ji
,
C.
, and
Liu
,
Q.
,
2018
, “
Robotic Disassembly Sequence Planning Using Enhanced Discrete Bees Algorithm in Remanufacturing
,”
Int. J. Prod. Res.
,
56
(
9
), pp.
3134
3151
.
87.
Liu
,
J.
,
Zhou
,
Z.
,
Pham
,
D. T.
,
Xu
,
W.
,
Ji
,
C.
, and
Liu
,
Q.
,
2020
, “
Collaborative Optimization of Robotic Disassembly Sequence Planning and Robotic Disassembly Line Balancing Problem Using Improved Discrete Bees Algorithm in Remanufacturing
,”
Rob. Computer-Integrated Manuf.
,
61
, p.
101829
.
88.
Wang
,
K.
,
Li
,
X.
,
Gao
,
L.
,
Li
,
P.
, and
Sutherland
,
J. W.
,
2021
, “
A Discrete Artificial Bee Colony Algorithm for Multiobjective Disassembly Line Balancing of End-of-Life Products
,”
IEEE Trans. Cybernetics
,
52
(
8
), pp.
7415
7426
.
89.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
Artificial Bee Colony Algorithm for Solving Sequence-Dependent Disassembly Line Balancing Problem
,”
Expert. Syst. Appl.
,
40
(
18
), pp.
7231
7241
.
90.
Çil
,
Z. A.
,
Kizilay
,
D.
,
Li
,
Z.
, and
Öztop
,
H.
,
2022
, “
Two-Sided Disassembly Line Balancing Problem With Sequence-Dependent Setup Time: A Constraint Programming Model and Artificial Bee Colony Algorithm
,”
Expert. Syst. Appl.
,
203
, p.
117529
.
91.
Luo
,
Y.
,
Peng
,
Q.
, and
Gu
,
P.
,
2016
, “
Integrated Multi-Layer Representation and Ant Colony Search for Product Selective Disassembly Planning
,”
Comput. Ind.
,
75
, pp.
13
26
.
92.
Malik
,
S.
,
2010
, “
Performance Comparison Between Ant Algorithm and Modified Ant Algorithm
,”
Int. J. Adv. Comput. Sci. Appl.
,
1
(
4
), pp.
42
46
.
93.
Yeh
,
W.-C.
,
2012
, “
Simplified Swarm Optimization in Disassembly Sequencing Problems With Learning Effects
,”
Computers Oper. Res.
,
39
(
9
), pp.
2168
2177
.
94.
Kalayci
,
C. B.
, and
Gupta
,
S. M.
,
2013
, “
A Particle Swarm Optimization Algorithm With Neighborhood-Based Mutation for Sequence-Dependent Disassembly Line Balancing Problem
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1
), pp.
197
209
.
95.
Li
,
W.
,
Xia
,
K.
,
Gao
,
L.
, and
Chao
,
K.-M.
,
2013
, “
Selective Disassembly Planning for Waste Electrical and Electronic Equipment With Case Studies on Liquid Crystaldisplays
,”
Rob. Computer-Integrated Manuf.
,
29
(
4
), pp.
248
260
.
96.
Guo
,
X.
,
Zhou
,
M.
,
Liu
,
S.
, and
Qi
,
L.
,
2019
, “
Lexicographic Multiobjective Scatter Search for the Optimization of Sequence-Dependent Selective Disassembly Subject to Multiresource Constraints
,”
IEEE Trans. Cybernetics
,
50
(
7
), pp.
3307
3317
.
97.
Kim
,
H.-W.
, and
Lee
,
D.-H.
,
2017
, “
An Optimal Algorithm for Selective Disassembly Sequencing With Sequence-Dependent Set-Ups in Parallel Disassembly Environment
,”
Int. J. Prod. Res.
,
55
(
24
), pp.
7317
7333
.
98.
Zhang
,
Y.
,
Zhang
,
Z.
,
Guan
,
C.
, and
Xu
,
P.
,
2022
, “
Improved Whale Optimisation Algorithm for Two-Sided Disassembly Line Balancing Problems Considering Part Characteristic Indexes
,”
Int. J. Prod. Res.
,
60
(
8
), pp.
2553
2571
.
99.
Behdad
,
S.
,
Berg
,
L. P.
,
Thurston
,
D.
, and
Vance
,
J.
,
2014
, “
Leveraging Virtual Reality Experiences With Mixed-Integer Nonlinear Programming Visualization of Disassembly Sequence Planning Under Uncertainty
,”
ASME J. Mech. Des.
,
136
(
4
), p.
041005
.
100.
Tao
,
F.
,
Bi
,
L.
,
Zuo
,
Y.
, and
Nee
,
A. Y.
,
2018
, “
Partial/parallel Disassembly Sequence Planning for Complex Products
,”
ASME J. Manuf. Sci. Eng.
,
140
(
1
), p.
011016
.
101.
Chen
,
Z.
,
Li
,
L.
,
Zhao
,
F.
,
Sutherland
,
J. W.
, and
Yin
,
F.
,
2023
, “
Disassembly Sequence Planning for Target Parts of End-of-Life Smartphones Using Q-Learning Algorithm
,”
Procedia CIRP
,
116
, pp.
684
689
.
102.
Xiao
,
J.
,
Gao
,
J.
,
Anwer
,
N.
, and
Eynard
,
B.
,
2023
, “
Multi-Agent Reinforcement Learning Method for Disassembly Sequential Task Optimization Based on Human-Robot Collaborative Disassembly in Electric Vehicle Battery Recycling
,”
ASME J. Manuf. Sci. Eng.
,
145
(
12
), p.
121001
.
103.
Xia
,
K.
,
Gao
,
L.
,
Wang
,
L.
,
Li
,
W.
, and
Chao
,
K.-M.
,
2013
, “
A Simplified Teaching-Learning-Based Optimization Algorithm for Disassembly Sequence Planning
,”
2013 IEEE 10th International Conference on e-Business Engineering
,
Coventry, UK
,
Sept. 11–13
, pp.
393
398
.
104.
Ranz
,
F.
,
Hummel
,
V.
, and
Sihn
,
W.
,
2017
, “
Capability-Based Task Allocation in Human-Robot Collaboration
,”
Procedia Manuf.
,
9
, pp.
182
189
.
105.
Zanchettin
,
A. M.
,
Casalino
,
A.
,
Piroddi
,
L.
, and
Rocco
,
P.
,
2018
, “
Prediction of Human Activity Patterns for Human–Robot Collaborative Assembly Tasks
,”
IEEE Trans. Ind. Inf.
,
15
(
7
), pp.
3934
3942
.
106.
Wilcox
,
R.
, and
Shah
,
J.
,
2012
, “
Optimization of Multi-Agent Workflow for Human-Robot Collaboration in Assembly Manufacturing
,”
Infotech@Aerospace 2012
,
Garden Grove, CA
,
June 19–21
, pp.
25
35
.
107.
Chen
,
F.
,
Sekiyama
,
K.
,
Cannella
,
F.
, and
Fukuda
,
T.
,
2013
, “
Optimal Subtask Allocation for Human and Robot Collaboration Within Hybrid Assembly System
,”
IEEE Trans. Autom. Sci. Eng.
,
11
(
4
), pp.
1065
1075
.
108.
Wu
,
B.
,
Hu
,
B.
, and
Lin
,
H.
,
2017
, “
Toward Efficient Manufacturing Systems: A Trust Based Human Robot Collaboration
,”
2017 American Control Conference (ACC)
,
Seattle, WA
,
May 24–26
, pp.
1536
1541
.
109.
Rahman
,
S. M.
,
Sadrfaridpour
,
B.
, and
Wang
,
Y.
,
2015
, “
Trust-Based Optimal Subtask Allocation and Model Predictive Control for Human-Robot Collaborative Assembly in Manufacturing
,”
Proceedings of the ASME 2015 Dynamic Systems and Control Conference. Volume 2: Diagnostics and Detection; Drilling; Dynamics and Control of Wind Energy Systems; Energy Harvesting; Estimation and Identification; Flexible and Smart Structure Control; Fuels Cells/Energy Storage; Human Robot Interaction; HVAC Building Energy Management; Industrial Applications; Intelligent Transportation Systems; Manufacturing; Mechatronics; Modelling and Validation; Motion and Vibration Control Applications
,
Columbus, OH
,
Oct. 28–30
,
ASME, p. V002T32A004
.
110.
Johannsmeier
,
L.
, and
Haddadin
,
S.
,
2016
, “
A Hierarchical Human-Robot Interaction-Planning Framework for Task Allocation in Collaborative Industrial Assembly Processes
,”
IEEE Rob. Autom. Lett.
,
2
(
1
), pp.
41
48
.
111.
Tsarouchi
,
P.
,
Matthaiakis
,
A.-S.
,
Makris
,
S.
, and
Chryssolouris
,
G.
,
2017
, “
On a Human-Robot Collaboration in an Assembly Cell
,”
Int. J. Computer Integrated Manuf.
,
30
(
6
), pp.
580
589
.
112.
Schröter
,
D.
,
Jaschewski
,
P.
,
Kuhrke
,
B.
, and
Verl
,
A.
,
2016
, “
Methodology to Identify Applications for Collaborative Robots in Powertrain Assembly
,”
Procedia CIRP
,
55
, pp.
12
17
.
113.
Rosenfeld
,
A.
,
Noa
,
A.
,
Maksimov
,
O.
, and
Kraus
,
S.
,
2016
, “
Human-Multi-robot Team Collaboration for Efficient Warehouse Operation
,”
Autonomous Robots and Multirobot Systems (ARMS) Workshop at AAMAS
,
Singapore
,
May 9–13
.
114.
Thomas
,
G.
,
Chien
,
M.
,
Tamar
,
A.
,
Ojea
,
J. A.
, and
Abbeel
,
P.
,
2018
, “
Learning Robotic Assembly From Cad
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, pp.
3524
3531
.
115.
Yu
,
T.
,
Huang
,
J.
, and
Chang
,
Q.
,
2020
, “
Mastering the Working Sequence in Human-Robot Collaborative Assembly Based on Reinforcement Learning
,”
IEEE Access
,
8
, p.
163868
.
116.
Riedelbauch
,
D.
, and
Henrich
,
D.
,
2019
, “
Exploiting a Human-Aware World Model for Dynamic Task Allocation in Flexible Human-Robot Teams
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
6511
6517
.
117.
Aliev
,
K.
,
Antonelli
,
D.
, and
Bruno
,
G.
,
2019
, “
Task-Based Programming and Sequence Planning for Human-Robot Collaborative Assembly
,”
IFAC-PapersOnLine
,
52
(
13
), pp.
1638
1643
.
118.
Ye
,
F.
,
Perrett
,
J.
,
Zhang
,
L.
,
Laili
,
Y.
, and
Wang
,
Y.
,
2022
, “
A Self-Evolving System for Robotic Disassembly Sequence Planning Under Uncertain Interference Conditions
,”
Rob. Computer Integrated Manuf.
,
78
, p.
102392
.
119.
Wurster
,
M.
,
Michel
,
M.
,
May
,
M. C.
,
Kuhnle
,
A.
,
Stricker
,
N.
, and
Lanza
,
G.
,
2022
, “
Modelling and Condition-Based Control of a Flexible and Hybrid Disassembly System With Manual and Autonomous Workstations Using Reinforcement Learning
,”
J. Intell. Manuf.
,
33
(
2
), pp.
575
591
.
120.
Galina
,
S. B.
, and
Galin
,
R. R.
,
2023
, “
Approach to Efficient Task Allocation and Cost Minimization in Collaborative Robotic Systems
,”
2023 International Russian Smart Industry Conference (SmartIndustryCon)
,
Sochi, Russian Federation
,
Mar. 27–31
, pp.
574
579
.
121.
Fragkiadaki
,
K.
,
Levine
,
S.
,
Felsen
,
P.
, and
Malik
,
J.
,
2015
, “
Recurrent Network Models for Human Dynamics
,”
Proceedings of the IEEE International Conference on Computer Vision (ICCV)
,
Santiago, Chile
,
Dec. 13–16
, pp.
4346
4354
.
122.
Martinez
,
J.
,
Black
,
M. J.
, and
Romero
,
J.
,
2017
, “
On Human Motion Prediction Using Recurrent Neural Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
, pp.
2891
2900
.
123.
Aksan
,
E.
,
Kaufmann
,
M.
,
Cao
,
P.
, and
Hilliges
,
O.
,
2021
, “
A Spatio-Temporal Transformer for 3d Human Motion Prediction
,”
2021 International Conference on 3D Vision (3DV)
,
London, UK
,
Dec. 1–3
, pp.
565
574
.
124.
Alahi
,
A.
,
Goel
,
K.
,
Ramanathan
,
V.
,
Robicquet
,
A.
,
Fei-Fei
,
L.
, and
Savarese
,
S.
,
2016
, “
Social Lstm: Human Trajectory Prediction in Crowded Spaces
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Las Vegas, NV
,
June 26–July 1
, pp.
961
971
.
125.
Gupta
,
A.
,
Johnson
,
J.
,
Fei-Fei
,
L.
,
Savarese
,
S.
, and
Alahi
,
A.
,
2018
, “
Social Gan: Socially Acceptable Trajectories With Generative Adversarial Networks
,”
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Salt Lake City, UT
,
June 18–22
, pp.
2255
2264
.
126.
Wang
,
J.
,
Xu
,
H.
,
Narasimhan
,
M.
, and
Wang
,
X.
,
2021
, “
Multi-Person 3d Motion Prediction With Multi-Range Transformers
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
6036
6049
.
127.
Yuan
,
Y.
, and
Kitani
,
K.
,
2020
, “Dlow: Diversifying Latent Flows for Diverse Human Motion Prediction,”
Computer Vision–ECCV 2020
,
A.
Vedaldi
,
H.
Bischof
,
T.
Brox
, and
J.-M.
Frahm
, eds.,
Springer
,
Cham
, pp.
346
364
.
128.
Mao
,
W.
,
Liu
,
M.
, and
Salzmann
,
M.
,
2021
, “
Generating Smooth Pose Sequences for Diverse Human Motion Prediction
,”
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)
,
Virtual, Online
,
Oct. 11–17
, pp.
13309
13318
.
129.
Ma
,
H.
,
Li
,
J.
,
Hosseini
,
R.
,
Tomizuka
,
M.
, and
Choi
,
C.
,
2022
, “
Multi-Objective Diverse Human Motion Prediction With Knowledge Distillation
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
New Orleans, LA
,
June 19–24
, pp.
8161
8171
.
130.
Ding
,
H.
,
Reißig
,
G.
,
Wijaya
,
K.
,
Bortot
,
D.
,
Bengler
,
K.
, and
Stursberg
,
O.
,
2011
, “
Human Arm Motion Modeling and Long-Term Prediction for Safe and Efficient Human-Robot-Interaction
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
5875
5880
.
131.
Mainprice
,
J.
, and
Berenson
,
D.
,
2013
, “
Human-Robot Collaborative Manipulation Planning Using Early Prediction of Human Motion
,”
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
299
306
.
132.
Luo
,
R.
,
Hayne
,
R.
, and
Berenson
,
D.
,
2018
, “
Unsupervised Early Prediction of Human Reaching for Human-Robot Collaboration in Shared Workspaces
,”
Autonomous Rob.
,
42
(
3
), pp.
631
648
.
133.
Mainprice
,
J.
,
Hayne
,
R.
, and
Berenson
,
D.
,
2015
, “
Predicting Human Reaching Motion in Collaborative Tasks Using Inverse Optimal Control and Iterative Re-Planning
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
885
892
.
134.
Mainprice
,
J.
,
Hayne
,
R.
, and
Berenson
,
D.
,
2016
, “
Goal Set Inverse Optimal Control and Iterative Replanning for Predicting Human Reaching Motions in Shared Workspaces
,”
IEEE Trans. Rob.
,
32
(
4
), pp.
897
908
.
135.
Tian
,
S.
,
Liang
,
X.
, and
Zheng
,
M.
,
2023
, “
An Optimization-Based Human Behavior Modeling and Prediction for Human-Robot Collaborative Disassembly
,”
2023 American Control Conference (ACC)
,
San Diego, CA
,
May 31–June 2
, pp.
3356
3361
.
136.
Cheng
,
Y.
,
Zhao
,
W.
,
Liu
,
C.
, and
Tomizuka
,
M.
,
2019
, “
Human Motion Prediction Using Semi-Adaptable Neural Networks
,”
2019 American Control Conference (ACC)
,
Philadelphia, PA
,
July 10–12
, pp.
4884
4890
.
137.
Landi
,
C. T.
,
Cheng
,
Y.
,
Ferraguti
,
F.
,
Bonfè
,
M.
,
Secchi
,
C.
, and
Tomizuka
,
M.
,
2019
, “
Prediction of Human Arm Target for Robot Reaching Movements
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
5950
5957
.
138.
Wang
,
Y.
,
Ye
,
X.
,
Yang
,
Y.
, and
Zhang
,
W.
,
2017
, “
Collision-Free Trajectory Planning in Human-Robot Interaction Through Hand Movement Prediction From Vision
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
, pp.
305
310
.
139.
Zhang
,
J.
,
Liu
,
H.
,
Chang
,
Q.
,
Wang
,
L.
, and
Gao
,
R. X.
,
2020
, “
Recurrent Neural Network for Motion Trajectory Prediction in Human-Robot Collaborative Assembly
,”
CIRP. Ann.
,
69
(
1
), pp.
9
12
.
140.
Liu
,
R.
, and
Liu
,
C.
,
2020
, “
Human Motion Prediction Using Adaptable Recurrent Neural Networks and Inverse Kinematics
,”
IEEE Control Syst. Lett.
,
5
(
5
), pp.
1651
1656
.
141.
Liu
,
W.
,
Liang
,
X.
, and
Zheng
,
M.
,
2022
, “
Dynamic Model Informed Human Motion Prediction Based on Unscented Kalman Filter
,”
IEEE/ASME Trans. Mechatronics
,
27
(
6
), pp.
5287
5295
.
142.
Eltouny
,
K. A.
,
Liu
,
W.
,
Tian
,
S.
,
Zheng
,
M.
, and
Liang
,
X.
,
2023
, “De-tgn: Uncertainty-Aware Human Motion Forecasting Using Deep Ensembles,” Preprint arXiv:2307.03610.
143.
Liao
,
H.-Y.
,
Zheng
,
M.
,
Hu
,
B.
, and
Behdad
,
S.
,
2022
, “
Human Hand Motion Prediction in Disassembly Operations
,”
Proceedings of the ASME 2022 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5: 27th Design for Manufacturing and the Life Cycle Conference (DFMLC)
,
St. Louis, MO
,
Aug. 14–17
,
ASME, p. V005T05A021
.
144.
Bütepage
,
J.
,
Kjellström
,
H.
, and
Kragic
,
D.
,
2018
, “
Anticipating Many Futures: Online Human Motion Prediction and Generation for Human-Robot Interaction
,”
IEEE International Conference on Robotics and Automation (ICRA)
, pp.
4563
4570
.
145.
Tian
,
S.
,
Zheng
,
M.
, and
Liang
,
X.
,
2023
, “Transfusion: A Practical and Effective Transformer-based Diffusion Model for 3D Human Motion Prediction,” Preprint arXiv:2307.16106.
146.
Dinh
,
K. H.
,
Oguz
,
O.
,
Huber
,
G.
,
Gabler
,
V.
, and
Wollherr
,
D.
,
2015
, “
An Approach to Integrate Human Motion Prediction Into Local Obstacle Avoidance in Close Human-Robot Collaboration
,”
2015 IEEE International Workshop on Advanced Robotics and its Social Impacts (ARSO)
,
Lyon, France
,
June 30–July 2
, pp.
1
6
.
147.
Oguz
,
O. S.
,
Gabler
,
V.
,
Huber
,
G.
,
Zhou
,
Z.
, and
Wollherr
,
D.
,
2017
, “Hybrid Human Motion Prediction for Action Selection Within Human-Robot Collaboration,”
2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics
, Vol.
1
,
D.
Kulić
,
Y.
Nakamura
,
O.
Khatib
, and
G.
Venture
, eds.,
Springer
,
Cham
, pp.
289
298
.
148.
Luo
,
R. C.
, and
Mai
,
L.
,
2019
, “
Human Intention Inference and On-Line Human Hand Motion Prediction for Human-Robot Collaboration
,”
2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
5958
5964
.
149.
Li
,
Q.
,
Zhang
,
Z.
,
You
,
Y.
,
Mu
,
Y.
, and
Feng
,
C.
,
2020
, “
Data Driven Models for Human Motion Prediction in Human-Robot Collaboration
,”
IEEE Access
,
8
, p.
227690
.
150.
Liu
,
H.
, and
Wang
,
L.
,
2017
, “
Human Motion Prediction for Human-Robot Collaboration
,”
J. Manuf. Syst.
,
44
, pp.
287
294
.
151.
Pérez-D’Arpino
,
C.
, and
Shah
,
J. A.
,
2015
, “
Fast Target Prediction of Human Reaching Motion for Cooperative Human-Robot Manipulation Tasks Using Time Series Classification
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
6175
6182
.
152.
Liu
,
Z.
,
Liu
,
Q.
,
Xu
,
W.
,
Liu
,
Z.
,
Zhou
,
Z.
, and
Chen
,
J.
,
2019
, “
Deep Learning-Based Human Motion Prediction Considering Context Awareness for Human-Robot Collaboration in Manufacturing
,”
Procedia CIRP
,
83
, pp.
272
278
.
153.
Wang
,
Z.
,
Wang
,
B.
,
Liu
,
H.
, and
Kong
,
Z.
,
2017
, “
Recurrent Convolutional Networks Based Intention Recognition for Human-Robot Collaboration Tasks
,”
2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
,
Banff, AB, Canada
,
Oct. 5–8
, pp.
1675
1680
.
154.
Wang
,
P.
,
Liu
,
H.
,
Wang
,
L.
, and
Gao
,
R. X.
,
2018
, “
Deep Learning-Based Human Motion Recognition for Predictive Context-Aware Human-robot Collaboration
,”
CIRP. Ann.
,
67
(
1
), pp.
17
20
.
155.
Petković
,
T.
,
Petrović
,
L.
,
Marković
,
I.
, and
Petrović
,
I.
,
2022
, “
Human Action Prediction in Collaborative Environments Based on Shared-Weight Lstms With Feature Dimensionality Reduction
,”
Appl. Soft. Comput.
,
126
, p.
109245
.
156.
Ionescu
,
C.
,
Papava
,
D.
,
Olaru
,
V.
, and
Sminchisescu
,
C.
,
2013
, “
Human3.6m: Large Scale Datasets and Predictive Methods for 3d Human Sensing in Natural Environments
,”
IEEE. Trans. Pattern. Anal. Mach. Intell.
,
36
(
7
), pp.
1325
1339
.
157.
Sigal
,
L.
,
Balan
,
A. O.
, and
Black
,
M. J.
,
2010
, “
Humaneva: Synchronized Video and Motion Capture Dataset and Baseline Algorithm for Evaluation of Articulated Human Motion
,”
Int. J. Computer Vision
,
87
(
1–2
), pp.
4
27
.
158.
Hart
,
P. E.
,
Nilsson
,
N. J.
, and
Raphael
,
B.
,
1968
, “
A Formal Basis for the Heuristic Determination of Minimum Cost Paths
,”
IEEE Trans. Syst. Sci. Cybernetics
,
4
(
2
), pp.
100
107
.
159.
Tang
,
S. H.
,
Khaksar
,
W.
,
Ismail
,
N.
, and
Ariffin
,
M.
,
2012
, “
A Review on Robot Motion Planning Approaches
,”
Pertanika J. Sci. Technol.
,
20
(
1
), pp.
15
29
.
160.
Lasota
,
P. A.
,
Fong
,
T.
, and
Shah
,
J. A.
, et al
,
2017
,
A Survey of Methods for Safe Human-Robot Interaction
, Vol.
104
,
Now Publishers Delft
,
The Netherlands
.
161.
LaValle
,
S.
,
1998
, “Rapidly-Exploring Random Trees: A New Tool for Path Planning,” Research Report 9811.
162.
Kavraki
,
L. E.
,
Svestka
,
P.
,
Latombe
,
J.-C.
, and
Overmars
,
M. H.
,
1996
, “
Probabilistic Roadmaps for Path Planning in High-Dimensional Configuration Spaces
,”
IEEE. Trans. Rob. Autom.
,
12
(
4
), pp.
566
580
.
163.
Rajendran
,
V.
,
Carreno-Medrano
,
P.
,
Fisher
,
W.
, and
Kulić
,
D.
,
2021
, “
Human-Aware RRT-Connect: Motion Planning for Safe Human-Robot Collaboration
,”
2021 30th IEEE International Conference on Robot & Human Interactive Communication (RO-MAN)
,
Vancouver, BC, Canada
,
Aug. 8–12
, pp.
15
22
.
164.
Wei
,
K.
, and
Ren
,
B.
,
2018
, “
A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm
,”
Sensors
,
18
(
2
), p.
571
.
165.
Gammell
,
J. D.
,
Srinivasa
,
S. S.
, and
Barfoot
,
T. D.
,
2015
, “
Batch Informed Trees (bit*): Sampling-Based Optimal Planning Via the Heuristically Guided Search of Implicit Random Geometric Graphs
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
3067
3074
.
166.
Janson
,
L.
,
Schmerling
,
E.
,
Clark
,
A.
, and
Pavone
,
M.
,
2015
, “
Fast Marching Tree: A Fast Marching Sampling-Based Method for Optimal Motion Planning in Many Dimensions
,”
Int. J. Rob. Res.
,
34
(
7
), pp.
883
921
.
167.
Stilman
,
M.
,
2007
,
Task Constrained Motion Planning in Robot Joint Space
,” 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE
, pp.
3074
3081
.
168.
Liu
,
W.
,
Liang
,
X.
, and
Zheng
,
M.
,
2023
, “
Task-Constrained Motion Planning Considering Uncertainty-Informed Human Motion Prediction for Human–Robot Collaborative Disassembly
,”
IEEE/ASME Trans. Mechatronics
,
28
(
4
), pp.
2056
2063
.
169.
Kingston
,
Z.
,
Moll
,
M.
, and
Kavraki
,
L. E.
,
2018
, “
Sampling-Based Methods for Motion Planning With Constraints
,”
Ann. Rev. Control Rob. Autonomous Syst.
,
1
, pp.
159
185
.
170.
Ratliff
,
N.
,
Zucker
,
M.
,
Bagnell
,
J. A.
, and
Srinivasa
,
S.
,
2009
, “
Chomp: Gradient Optimization Techniques for Efficient Motion Planning
,”
IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
489
494
.
171.
Schulman
,
J.
,
Duan
,
Y.
,
Ho
,
J.
,
Lee
,
A.
,
Awwal
,
I.
,
Bradlow
,
H.
,
Pan
,
J.
,
Patil
,
S.
,
Goldberg
,
K.
, and
Abbeel
,
P.
,
2014
, “
Motion Planning With Sequential Convex Optimization and Convex Collision Checking
,”
Int. J. Rob. Res.
,
33
(
9
), pp.
1251
1270
.
172.
Kalakrishnan
,
M.
,
Chitta
,
S.
,
Theodorou
,
E.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2011
, “
Stomp: Stochastic Trajectory Optimization for Motion Planning
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
,
pp. 4569–4574
.
173.
Zhao
,
W.-Y.
,
He
,
S.
,
Wen
,
C.
, and
Liu
,
C.
,
2020
, “
Contact-Rich Trajectory Generation in Confined Environments Using Iterative Convex Optimization
,”
Proceedings of the ASME 2020 Dynamic Systems and Control Conference. Volume 2: Intelligent Transportation/Vehicles; Manufacturing; Mechatronics; Engine/After-Treatment Systems; Soft Actuators/Manipulators; Modeling/Validation; Motion/Vibration Control Applications; Multi-Agent/Networked Systems; Path Planning/Motion Control; Renewable/Smart Energy Systems; Security/Privacy of Cyber-Physical Systems; Sensors/Actuators; Tracking Control Systems; Unmanned Ground/Aerial Vehicles; Vehicle Dynamics, Estimation, Control; Vibration/Control Systems; Vibrations
,
Virtual, Online
,
Oct. 5–7
,
ASME, p. V002T31A002
.
174.
Faroni
,
M.
,
Beschi
,
M.
, and
Pedrocchi
,
N.
,
2019
, “
An MPC Framework for Online Motion Planning in Human-Robot Collaborative Tasks
,”
2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)
,
Zaragoza, Spain
,
Sept. 10–13
, pp.
1555
1558
.
175.
Wang
,
J.
,
Chi
,
W.
,
Li
,
C.
,
Wang
,
C.
, and
Meng
,
M. Q.-H.
,
2020
, “
Neural RRT*: Learning-Based Optimal Path Planning
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
1748
1758
.
176.
Khan
,
A.
,
Ribeiro
,
A.
,
Kumar
,
V.
, and
Francis
,
A. G.
,
2020
, “Graph Neural Networks for Motion Planning,” Preprint arXiv:2006.06248.
177.
Yu
,
C.
, and
Gao
,
S.
,
2021
, “
Reducing Collision Checking for Sampling-Based Motion Planning Using Graph Neural Networks
,”
Adv. Neural Inf. Process. Syst.
,
34
, pp.
4274
4289
.
178.
Bency
,
M. J.
,
Qureshi
,
A. H.
, and
Yip
,
M. C.
,
2019
, “
Neural Path Planning: Fixed Time, Near-Optimal Path Generation Via Oracle Imitation
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Macau, China
,
Nov. 3–8
, pp.
3965
3972
.
179.
Qureshi
,
A. H.
,
Miao
,
Y.
,
Simeonov
,
A.
, and
Yip
,
M. C.
,
2020
, “
Motion Planning Networks: Bridging the Gap Between Learning-Based and Classical Motion Planners
,”
IEEE Trans. Rob.
,
37
(
1
), pp.
48
66
.
180.
Kanazawa
,
A.
,
Kinugawa
,
J.
, and
Kosuge
,
K.
,
2019
, “
Adaptive Motion Planning for a Collaborative Robot Based on Prediction Uncertainty to Enhance Human Safety and Work Efficiency
,”
IEEE Trans. Rob.
,
35
(
4
), pp.
817
832
.
181.
Cheng
,
Y.
,
Sun
,
L.
,
Liu
,
C.
, and
Tomizuka
,
M.
,
2020
, “
Towards Efficient Human-Robot Collaboration With Robust Plan Recognition and Trajectory Prediction
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
2602
2609
.
182.
Park
,
J. S.
,
Park
,
C.
, and
Manocha
,
D.
,
2019
, “
I-planner: Intention-Aware Motion Planning Using Learning-Based Human Motion Prediction
,”
Int. J. Rob. Res.
,
38
(
1
), pp.
23
39
.
183.
Malm
,
T.
,
Viitaniemi
,
J.
,
Latokartano
,
J.
,
Lind
,
S.
,
Venho-Ahonen
,
O.
, and
Schabel
,
J.
,
2010
, “
Safety of Interactive Robotics–Learning From Accidents
,”
Int. J. Soc. Rob.
,
2
, pp.
221
227
.
184.
Fryman
,
J.
, and
Matthias
,
B.
,
2012
, “
Safety of Industrial Robots: From Conventional to Collaborative Applications
,”
ROBOTIK 2012; 7th German Conference on Robotics
,
Munich, Germany
,
May 21–22
, pp.
1
5
.
185.
Goodrich
,
M. A.
, and
Schultz
,
A. C.
,
2008
, “
Human–Robot Interaction: A Survey
,”
Found. Trends® Human–Computer Interact.
,
1
(
3
), pp.
203
275
.
186.
Sheridan
,
T. B.
,
2016
, “
Human–Robot Interaction: Status and Challenges
,”
Human Factors
,
58
(
4
), pp.
525
532
.
187.
Lasota
,
P.
,
Nikolaidis
,
S.
, and
Shah
,
J. A.
,
2013
, “
Developing an Adaptive Robotic Assistant for Close Proximity Human-Robot Collaboration in Space
,”
AIAA Infotech@ Aerospace (I@ A) Conference
,
Boston, MA
,
Aug. 19–22
.
188.
Cherubini
,
A.
,
Passama
,
R.
,
Crosnier
,
A.
,
Lasnier
,
A.
, and
Fraisse
,
P.
,
2016
, “
Collaborative Manufacturing With Physical Human–Robot Interaction
,”
Rob. Computer-Integrated Manuf.
,
40
, pp.
1
13
.
189.
Daneshmand
,
M.
,
Noroozi
,
F.
,
Corneanu
,
C.
,
Mafakheri
,
F.
, and
Fiorini
,
P.
,
2022
, “
Industry 4.0 and Prospects of Circular Economy: A Survey of Robotic Assembly and Disassembly
,”
Int. J. Adv. Manuf. Technol.
,
124
, pp.
2973
3000
.
190.
Robla-Gómez
,
S.
,
Becerra
,
V. M.
,
Llata
,
J. R.
,
Gonzalez-Sarabia
,
E.
,
Torre-Ferrero
,
C.
, and
Perez-Oria
,
J.
,
2017
, “
Working Together: A Review on Safe Human-Robot Collaboration in Industrial Environments
,”
IEEE Access
,
5
, pp.
26754
26773
.
191.
Matheson
,
E.
,
Minto
,
R.
,
Zampieri
,
E. G.
,
Faccio
,
M.
, and
Rosati
,
G.
,
2019
, “
Human–Robot Collaboration in Manufacturing Applications: A Review
,”
Robotics
,
8
(
4
), p.
100
.
192.
Zhang
,
M.
,
Li
,
C.
,
Shang
,
Y.
, and
Liu
,
Z.
,
2022
, “
Cycle Time and Human Fatigue Minimization for Human-Robot Collaborative Assembly Cell
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6147
6154
.
193.
Proctor
,
R. W.
,
2018
,
Human Factors in Simple and Complex Systems
,
CRC Press
,
Boca Raton, FL
.
194.
Baykasoglu
,
A.
,
Tasan
,
S. O.
,
Tasan
,
A. S.
, and
Akyol
,
S. D.
,
2017
, “
Modeling and Solving Assembly Line Design Problems by Considering Human Factors With a Real-Life Application
,”
Human Factors Ergonomics Manuf. Service Ind.
,
27
(
2
), pp.
96
115
.
195.
Xu
,
Z.
,
Ko
,
J.
,
Cochran
,
D. J.
, and
Jung
,
M.-C.
,
2012
, “
Design of Assembly Lines With the Concurrent Consideration of Productivity and Upper Extremity Musculoskeletal Disorders Using Linear Models
,”
Comput. Ind. Eng.
,
62
(
2
), pp.
431
441
.
196.
Arkouli
,
Z.
,
Kokotinis
,
G.
,
Michalos
,
G.
,
Dimitropoulos
,
N.
, and
Makris
,
S.
,
2021
, “
AI-Enhanced Cooperating Robots for Reconfigurable Manufacturing of Large Parts
,”
IFAC-PapersOnLine
,
54
(
1
), pp.
617
622
.
197.
Kim
,
W.
,
Lorenzini
,
M.
,
Balatti
,
P.
,
Nguyen
,
P. D.
,
Pattacini
,
U.
,
Tikhanoff
,
V.
,
Peternel
,
L.
,
Fantacci
,
C.
,
Natale
,
L.
, and
Metta
,
G.
, et al.
2019
, “
Adaptable Workstations for Human-Robot Collaboration: A Reconfigurable Framework for Improving Worker Ergonomics and Productivity
,”
IEEE Rob. Autom. Mag.
,
26
(
3
), pp.
14
26
.
198.
Maurice
,
P.
,
Padois
,
V.
,
Measson
,
Y.
, and
Bidaud
,
P.
,
2017
, “
Human-Oriented Design of Collaborative Robots
,”
Int. J. Ind. Ergonomics
,
57
, pp.
88
102
.
199.
Faber
,
M.
,
Kuz
,
S.
,
Mertens
,
A.
, and
Schlick
,
C. M.
,
2016
, “Model-Based Evaluation of Cooperative Assembly Processes in Human-Robot Collaboration,”
Advances in Ergonomics of Manufacturing: Managing the Enterprise of the Future
,
C.
Schlick
, and
S.
Trzcieliński
, eds.,
Springer
,
Cham
, pp.
101
112
.
200.
Gualtieri
,
L.
,
Palomba
,
I.
,
Merati
,
F. A.
,
Rauch
,
E.
, and
Vidoni
,
R.
,
2020
, “
Design of Human-Centered Collaborative Assembly Workstations for the Improvement of Operators’ Physical Ergonomics and Production Efficiency: A Case Study
,”
Sustainability
,
12
(
9
), p.
3606
.
201.
Botti
,
L.
,
Mora
,
C.
, and
Regattieri
,
A.
,
2017
, “
Integrating Ergonomics and Lean Manufacturing Principles in a Hybrid Assembly Line
,”
Computers Ind. Eng.
,
111
, pp.
481
491
.
202.
Malik
,
A. A.
, and
Bilberg
,
A.
,
2019
, “
Complexity-Based Task Allocation in Human-Robot Collaborative Assembly
,”
Ind. Robot Int. J. Rob. Res. Appl.
,
46
(
4
), pp.
471
480
.
203.
Tram
,
A. V. N.
, and
Raweewan
,
M.
,
2020
, “
Optimal Task Allocation in Human-Robotic Assembly Processes
,”
2020 5th International Conference on Robotics and Automation Engineering (ICRAE)
,
Singapore
,
Nov. 20–22
, pp.
158
162
.
204.
Akkaladevi
,
S. C.
,
Plasch
,
M.
,
Pichler
,
A.
, and
Rinner
,
B.
,
2016
, “
Human Robot Collaboration to Reach a Common Goal in an Assembly Process
,”
STAIRS
,
The Hague, Holland
,
Aug. 26–Sept. 2
, pp.
3
14
.
205.
Tabrez
,
A.
,
Luebbers
,
M. B.
, and
Hayes
,
B.
,
2020
, “
A Survey of Mental Modeling Techniques in Human–Robot Teaming
,”
Current Rob. Rep.
,
1
(
4
), pp.
259
267
.
206.
Nikolaidis
,
S.
, and
Shah
,
J.
,
2012
, “
Human-Robot Teaming using Shared Mental Models
,”
ACM/IEEE HRI, Workshop on Human-Agent-Robot Teamwork
,
Boston MA
,
Mar. 5–8
.
207.
Chen
,
Y.
,
Luo
,
Y.
,
Yerebakan
,
M. O.
,
Xia
,
S.
,
Behdad
,
S.
, and
Hu
,
B.
,
2022
, “
Human Workload and Ergonomics During Human-Robot Collaborative Electronic Waste Disassembly
,”
2022 IEEE 3rd International Conference on Human-Machine Systems (ICHMS)
,
Orlando, FL
,
Nov. 17–19
, pp.
1
6
.
208.
Wang
,
C.-H.
,
Tsai
,
N.-H.
,
Lu
,
J.-M.
, and
Wang
,
M.-J. J.
,
2019
, “
Usability Evaluation of an Instructional Application Based on Google Glass for Mobile Phone Disassembly Tasks
,”
Appl. Ergon.
,
77
, pp.
58
69
.
209.
Biondi
,
F. N.
,
Cacanindin
,
A.
,
Douglas
,
C.
, and
Cort
,
J.
,
2021
, “
Overloaded and at Work: Investigating the Effect of Cognitive Workload on Assembly Task Performance
,”
Hum. Factors
,
63
(
5
), pp.
813
820
.
210.
Cohen
,
Y.
,
Shoval
,
S.
,
Faccio
,
M.
, and
Minto
,
R.
,
2022
, “
Deploying Cobots in Collaborative Systems: Major Considerations and Productivity Analysis
,”
Int. J. Prod. Res.
,
60
(
6
), pp.
1815
1831
.
211.
Zhou
,
Y.
,
Peng
,
Y.
,
Li
,
W.
, and
Pham
,
D. T.
,
2022
, “
Stackelberg Model-Based Human-Robot Collaboration in Removing Screws for Product Remanufacturing
,”
Rob. Computer Integrated Manuf.
,
77
, p.
102370
.
212.
Liu
,
H.
, and
Zhang
,
L.
,
2021
, “
Optimizing a Disassembly Sequence Planning With Success Rates of Disassembly Operations Via a Variable Neighborhood Search Algorithm
,”
IEEE Access
,
9
, p.
157540
.
213.
Lu
,
Q.
,
Ren
,
Y.
,
Jin
,
H.
,
Meng
,
L.
,
Li
,
L.
,
Zhang
,
C.
, and
Sutherland
,
J. W.
,
2020
, “
A Hybrid Metaheuristic Algorithm for a Profit-Oriented and Energy-Efficient Disassembly Sequencing Problem
,”
Rob. Computer Integrated Manuf.
,
61
, p.
101828
.
214.
Jin
,
G.
,
Li
,
W.
,
Wang
,
S.
, and
Gao
,
S.
,
2017
, “
A Systematic Selective Disassembly Approach for Waste Electrical and Electronic Equipment With Case Study on Liquid Crystal Display Televisions
,”
Proc. Inst. Mech. Eng. B.
,
231
(
13
), pp.
2261
2278
.
215.
Sen
,
W.
,
Xiaomei
,
Z.
, and
Lin
,
D.
,
2022
, “
Impact of Job Demands on Employee Learning: The Moderating Role of Human-Machine Cooperation Relationship
,”
Comput. Intell. Neurosci.
,
2022
, p.
7406716
.
216.
Acemoglu
,
D.
, and
Restrepo
,
P.
,
2018
, “
The Race Between Man and Machine: Implications of Technology for Growth, Factor Shares, and Employment
,”
Am. Economic Rev.
,
108
(
6
), pp.
1488
1542
.
217.
Acemoglu
,
D.
, and
Restrepo
,
P.
,
2019
, “
Automation and New Tasks: How Technology Displaces and Reinstates Labor
,”
J. Economic Perspectives
,
33
(
2
), pp.
3
30
.
218.
Willcocks
,
L.
,
2020
, “
Robo-Apocalypse Cancelled? Reframing the Automation and Future of Work Debate
,”
J. Inf. Technol.
,
35
(
4
), pp.
286
302
.
219.
Calvo
,
R.
, and
Gil
,
P.
,
2022
, “
Evaluation of Collaborative Robot Sustainable Integration in Manufacturing Assembly by Using Process Time Savings
,”
Materials
,
15
(
2
), p.
611
.
220.
Meier
,
T.
,
Makyšová
,
H.
, and
Pauliková
,
A.
,
2023
, “
Evaluation of the Economic, Ecological and Ethical Potential of Big Data Solutions for a Digital Utopia in Logistics
,”
Sustainability
,
15
(
6
), p.
5088
.
221.
Baldé
,
C. P.
,
Forti
,
V.
,
Gray
,
V.
,
Kuehr
,
R.
, and
Stegmann
,
P.
,
2017
,
The Global e-Waste Monitor 2017: Quantities, Flows and Resources
,
United Nations University, International Telecommunication Union, and International Solid Waste Association
,
Bonn, Germany; Geneva, Switzerland; Vienna, Austria
.
222.
homopoulos
,
N.
,
2018
, “
Electronic Waste Management: Global Markets and Technologies Through 2022
,” eport Code: ENV040A,
BCC Research
,
Wellesley, MA
.
223.
Berg
,
A.
,
Buffie
,
E. F.
, and
Zanna
,
L.-F.
,
2018
, “
Should We Fear the Robot Revolution? (The Correct Answer Is Yes)
,”
J. Monetary Econ.
,
97
, pp.
117
148
.
224.
Acemoglu
,
D.
, and
Restrepo
,
P.
,
2018
, “
Modeling Automation
,”
AEA Papers and Proceedings
,
108
, pp.
48
53
.
You do not currently have access to this content.