Abstract

An intelligent system for spatial visual feedback is presented, which enables the robot's autonomy for a range of robotic assembly tasks, in particular for arc welding, in an unstructured and “fixtureless” environment. The robot's autonomy is empowered by an embedded inductive inference-based machine learning module which learns a welded object's structural properties in the form of geometrical properties. In particular, the system tries to recognize line segments, using a spatial (three-dimensional) visual sensor in order to autonomously execute the objective task. The innovative result is that the recognition of the geometric primitives is done without a predefined Computer-Aided Design (CAD) model, significantly improving the system's autonomy and robustness. The system is validated on real-world welding tasks.

References

1.
Pires
,
J. N.
,
Loureiro
,
A.
, and
Bölmsjo
,
G.
,
2006
,
Welding Robots; Technology, System Issues and Applications
,
Springer-Verlag
,
London
.
2.
Lanzetta
,
M.
,
Santochi
,
M.
, and
Tantussi
,
G.
,
2001
, “
On-Line Control of Robotized Gas Metal Arc Welding
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
13
16
.
3.
Zou
,
Y.
,
Zhu
,
M.
, and
Chen
,
X.
,
2021
, “
A Robust Detector for Automated Welding Seam Tracking System
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
7
), p.
071001
.
4.
Wang
,
Z.
, and
Xu
,
Y.
,
2020
, “Vision-Based Seam Tracking in Robotic Welding: A Review of Recent Research,”
Transactions on Intelligent Welding Manufacturing. Transactions on Intelligent Welding Manufacturing
,
S.
Chen
,
Y.
Zhang
, and
Z.
Feng
, eds.,
Springer
,
Singapore
.
5.
Naso
,
D.
,
Turchiano
,
B.
, and
Pantaleo
,
P.
,
2005
, “
A Fuzzy-Logic Based Optical Sensor for Online Weld Defect-Detection
,”
IEEE Trans. Ind. Inform.
,
1
(
4
), pp.
259
273
.
6.
You
,
D.
,
Gao
,
X.
, and
Katayama
,
K.
,
2014
, “
Multisensor Fusion System for Monitoring High-Power Disk Laser Welding Using Support Vector Machine
,”
IEEE Trans. Ind. Inform.
,
10
(
2
), pp.
1285
2955
.
7.
Jaeschke
,
B.
,
2015
, “
Seam Tracking With Arc Sensors Using Welding Power Sources for Gas Metal Arc Welding (GMAW) With Consumable Electrodes
,” Technical Documentation No.: Y00.0110.1-00, Lorch Schweißtechnik GmbH, Auenwald, Germany.
8.
Jovane
,
F.
,
Koren
,
Y.
, and
Boër
,
C. R.
,
2003
, “
Present and Future of Flexible Automation: Towards New Paradigms
,”
CIRP Ann. Manuf. Technol.
,
52
(
2
), pp.
543
560
.
9.
Westkämper
,
E.
,
2014
,
Towards the Re-Industrialization of Europe—A Concept for Manufacturing for 2030
,
Springer Verlag
,
Berlin/Heidelberg
.
10.
Schraft
,
R. D.
, and
Meyer
,
C.
,
2006
, “
The Need for an Intuitive Teaching Method for Small and Medium Enterprises
,”
Proceedings of the Joint Conference on Robotics ISR 2006—ROBOTIK
,
Munich, Germany
,
May 15–17
, p.
10
, (CD-ROM), Abstract p. 95, (VDI-Berichte 1956).
11.
Takata
,
S.
, and
Hirano
,
T.
,
2011
, “
Human and Robot Allocation Method for Hybrid Assembly Systems
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
9
12
.
12.
Perzylo
,
A.
, et al
,
2019
, “
SMErobotics: Smart Robots for Flexible Manufacturing
,”
IEEE Robot. Autom. Mag.
,
26
(
1
), pp.
78
90
.
13.
European Commission
,
n.d.
, The European Robotics Initiative for Strengthening the Competitiveness of SMEs in Manufacturing by Integrating Aspects of Cognitive Systems. https://cordis.europa.eu/project/id/287787
14.
Ott
,
C.
,
2008
,
Cartesian Impedance Control of Redundant and Flexible-Joint Robots
,
Springer Verlag
,
Berling/Heidelberg
.
15.
Albu-Schäffer
,
A.
,
Ott
,
C.
, and
Hirzinger
,
G.
,
2007
, “
A Unified Passivity-Based Control Framework for Position, Torque and Impedance Control of Flexible Joint Robots
,”
Int. J. Robot. Res.
,
26
(
1
), pp.
23
39
.
16.
Angluin
,
D.
,
1982
, “
Inference of Reversible Languages
,”
J. ACM
,
29
(
3
), pp.
741
765
.
17.
Hopcroft
,
J. E.
, and
Ullman
,
J. D.
,
1979
,
Introduction to Automata Theory, Languages and Computation
,
Addison-Wesley
,
Reading, MA
.
18.
Aichernig
,
B. K.
, and
Tappler
,
M.
,
2018
, “
Efficient Active Automata Learning via Mutation Testing
,”
J. Autom. Reason.
,
63
(
4
), pp.
1103
1134
.
19.
Krichen
,
M.
,
2019
, “
Improving Formal Verification and Testing Techniques for Internet of Things and Smart Cities
,”
Mobile Netw. Appl.
,
28
(
2
), pp.
732
743
.
20.
Vongbunyong
,
S.
,
Kara
,
S.
, and
Pagnucco
,
M.
,
2013
, “
Application of Cognitive Robotics in Disassembly of Products
,”
CIRP Ann. Manuf. Technol.
,
62
(
1
), pp.
31
34
.
21.
Shapovalov
,
R.
,
Vetrov
,
D.
, and
Kohli
,
P.
,
2013
, “
Spatial Inference Machines
,”
Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Portland, OR
,
June 23–28
, IEEE Computer Society 2013, pp.
2985
2992
.
22.
Rodger
,
R. S.
, and
Rosebrugh
,
R. D.
,
1979
, “
Computing a Grammar for Sequences of Behavioural Acts
,”
Anim. Behav.
,
27
(
3
), pp.
737
749
.
23.
Richetin
,
M.
, and
Vernadat
,
F.
,
1984
, “
Efficient Regular Grammatical Inference for Pattern Recognition
,”
Pattern Recognit.
,
17
(
2
), pp.
245
250
.
24.
Miclet
,
L.
,
1987
, “Grammatical Inference,”
Syntactic and Structural Pattern Recognition, Theory and Applications
,
H.
Bunke
, and
A.
Sanfeliu
, eds.,
World Scientific
,
Singapore
. Series in Computer Science—Vol. 7.
25.
Shah
,
V.
, and
Putnik
,
G. D.
,
2016
, “
Software Tools for Understanding Grammatical Inference Algorithms: Part I—Tools for Regular Grammars and Finite-State Automata
,”
FME Trans. Fac. Mech. Eng. Belgr.
,
44
(
1
), pp.
83
91
.
26.
Danilov
,
I.
,
Petrovic
,
P. B.
,
Korac
,
F.
, and
Lukic
,
N.
,
2015
, “
Stratified Visual 3D Feedback for Adaptive Robotic Arc-Welding
,”
Proceedings of 2nd International Conference on Electrical, Electronic and Computing Engineering, IcETRAN
,
Silver Lake, Serbia
,
June 8–11
, p.
ROI4.3 1–6
.
27.
Gold
,
E. M.
,
1967
, “
Language Identification in the Limit
,”
Inf. Control
,
10
(
5
), pp.
447
474
.
You do not currently have access to this content.