Abstract

Inconel 718 is the most used nickel superalloys with applications in aerospace, oil and gas, nuclear, and chemical industries. It is mostly used for safety-critical components where the condition of the surface is a significant concern. The combination of mechanical, thermal, and chemical properties of Inconel 718 has made it a difficult-to-machine material. Despite recent advances in machining Inconel 718, achieving desired surface integrity with prescribed properties is still not possible. Different machining environments have been investigated for improving the machinability of Inconel 718 and enhance the surface integrity of machined components. This paper provides a new investigation and classification into recent advances in the machining of Inconel 718 regarding surface integrity, mostly concentrated on turning applications. The major findings and conclusions provide a critique of the state-of-the-art in machining environments for Inconel 718 together with future directions for research. Surface integrity has been evaluated in terms of surface topology as well as mechanical and microstructural properties. The impact of various cooling and lubrication methods has been investigated. It has been found that surface integrity is affected by the thermomechanical conditions at the cutting zone which are influenced by the cutting parameters, cutting tool, tool wear, and cooling/lubrication condition. The current technologies are incapable of delivering both productivity and sustainability while meeting surface integrity requirements for machining Inconel 718. High-pressure cooling has shown the potential to enhance tool wear at the expense of higher power consumption.

References

References
1.
Ulutan
,
D.
, and
Ozel
,
T.
,
2011
, “
Machining Induced Surface Integrity in Titanium and Nickel Alloys: A Review
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
250
280
. 10.1016/j.ijmachtools.2010.11.003
2.
Furrer
,
D.
, and
Fecht
,
H.
,
1999
, “
Ni-based Superalloys for Turbine Discs
,”
JOM
,
51
(
1
), pp.
14
17
. 10.1007/s11837-999-0005-y
3.
Slama
,
C.
, and
Abdellaoui
,
M.
,
2000
, “
Structural Characterization of the Aged Inconel 718
,”
J. Alloys Compd.
,
306
(
1–2
), pp.
277
284
. 10.1016/S0925-8388(00)00789-1
4.
Pollock
,
T. M.
, and
Tin
,
S.
,
2006
, “
Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties
,”
J. Propuls. Power
,
22
(
2
), pp.
361
374
. 10.2514/1.18239
5.
Pusavec
,
F.
,
Deshpande
,
A.
,
Yang
,
S.
,
M'Saoubi
,
R.
,
Kopac
,
J.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2014
, “
Sustainable Machining of High Temperature Nickel Alloy—Inconel 718: Part 1—Predictive Performance Models
,”
J. Clean. Prod.
,
81
, pp.
255
269
. 10.1016/j.jclepro.2014.06.040
6.
Devillez
,
A.
,
Le Coz
,
G.
,
Dominiak
,
S.
, and
Dudzinski
,
D.
,
2011
, “
Dry Machining of Inconel 718, Workpiece Surface Integrity
,”
J. Mater. Process. Technol.
,
211
(
10
), pp.
1590
1598
. 10.1016/j.jmatprotec.2011.04.011
7.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
State-of-the-art in Surface Integrity in Machining of Nickel-Based Super Alloys
,”
Int. J. Mach. Tools Manuf.
,
100
, pp.
25
54
. 10.1016/j.ijmachtools.2015.10.001
8.
Liang
,
X.
,
Liu
,
Z.
, and
Wang
,
B.
,
Jan. 2019
, “
State-of-the-Art of Surface Integrity Induced by Tool Wear Effects in Machining Process of Titanium and Nickel Alloys: A Review
,”
Measurement
,
132
, pp.
150
181
. 10.1016/j.measurement.2018.09.045
9.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2012
, “
Environmentally Conscious Machining of Difficult-to-Machine Materials With Regard to Cutting Fluids
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
83
101
. 10.1016/j.ijmachtools.2012.02.002
10.
Pusavec
,
F.
,
Hamdi
,
H.
,
Kopac
,
J.
, and
Jawahir
,
I. S.
,
2011
, “
Surface Integrity in Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
J. Mater. Process. Technol.
,
211
(
4
), pp.
773
783
. 10.1016/j.jmatprotec.2010.12.013
11.
Dudzinski
,
D.
,
Devillez
,
A.
,
Moufki
,
A.
,
Larrouquère
,
D.
,
Zerrouki
,
V.
, and
Vigneau
,
J.
,
2004
, “
A Review of Developments Towards dry and High Speed Machining of Inconel 718 Alloy
,”
44
(
4
), pp.
439
456
,
Pergamon
. 10.1016/s0890-6955(03)00159-7
12.
Kitagawa
,
T.
,
Kubo
,
A.
, and
Maekawa
,
K.
,
1997
, “
Temperature and Wear of Cutting Tools in High-Speed Machining of Inconel 718 and Ti-6Al-6V-2Sn
,”
Wear
,
202
(
2
), pp.
142
148
. 10.1016/S0043-1648(96)07255-9
13.
Behera
,
B. C.
,
Alemayehu
,
H.
,
Ghosh
,
S.
, and
Rao
,
P. V.
,
2017
, “
A Comparative Study of Recent Lubri-Coolant Strategies for Turning of Ni-Based Superalloy
,”
J. Manuf. Process.
,
30
, pp.
541
552
. 10.1016/j.jmapro.2017.10.027
14.
Akhavan Niaki
,
F.
, and
Mears
,
L.
,
2017
, “
A Comprehensive Study on the Effects of Tool Wear on Surface Roughness, Dimensional Integrity and Residual Stress in Turning IN718 Hard-to-Machine Alloy
,”
J. Manuf. Process.
,
30
, pp.
268
280
. 10.1016/j.jmapro.2017.09.016
15.
Jafarian
,
F.
,
Amirabadi
,
H.
,
Sadri
,
J.
, and
Banooie
,
H. R.
,
2014
, “
Simultaneous Optimizing Residual Stress and Surface Roughness in Turning of inconel718 Superalloy
,”
Mater. Manuf. Process.
,
29
(
3
), pp.
337
343
. 10.1080/10426914.2013.864413
16.
Outeiro
,
J. C.
,
Pina
,
J. C.
,
M’Saoubi
,
R.
,
Pusavec
,
F.
, and
Jawahir
,
I. S.
,
2008
, “
Analysis of Residual Stresses Induced by dry Turning of Difficult-to-Machine Materials
,”
CIRP Ann.—Manuf. Technol.
,
57
(
1
), pp.
77
80
. 10.1016/j.cirp.2008.03.076
17.
I. O. for Standardization
,
1993
,
International Standard ISO 3685: Tool-life Testing With Single-point Turning Tools
.
ISO
.
18.
I. S. ISO
,
1989
,
International Standard ISO 8688: Tool-life Testing in milling
.
19.
Choudhury
,
I. A.
, and
El-Baradie
,
M. A.
,
1998
, “
Machinability of Nickel-Base Super Alloys: A General Review
,”
J. Mater. Process. Technol.
,
300
(
3–4
), pp.
278
284
. 10.1016/S0924-0136(97)00429-9
20.
Ezugwu
,
E. O.
,
Wang
,
Z. M.
, and
Machado
,
A. R.
,
1999
, “
The Machinability of Nickel-Based Alloys: a Review
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
1
16
. 10.1016/S0924-0136(98)00314-8
21.
Arunachalam
,
R.
, and
Mannan
,
M. A.
,
2000
, “
Machinability of Nickel-Based High Temperature Alloys
,”
Mach. Sci. Technol.
,
4
(
1
), pp.
127
168
. 10.1080/10940340008945703
22.
Ezugwu
,
E. O.
,
Bonney
,
J.
, and
Yamane
,
Y.
,
2003
, “
An Overview of the Machinability of Aeroengine Alloys
,”
J. Mater. Process. Technol.
,
134
(
2
), pp.
233
253
. 10.1016/S0924-0136(02)01042-7
23.
Zhu
,
D.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Tool Wear Characteristics in Machining of Nickel-Based Superalloys
,”
Int. J. Mach. Tools Manuf.
,
64
, pp.
60
77
. 10.1016/j.ijmachtools.2012.08.001
24.
Singh
,
T.
,
Singh
,
P.
,
Dureja
,
J. S.
,
Dogra
,
M.
,
Singh
,
H.
, and
Bhatti
,
M. S.
,
2016
, “
A Review of Near dry Machining/Minimum Quantity Lubrication Machining of Difficult to Machine Alloys
,”
Int. J. Mach. Mach. Mater.
,
18
(
3
), pp.
213
251
. 10.1504/ijmmm.2016.076276
25.
Mohsan
,
A. U. H.
,
Liu
,
Z.
, and
Padhy
,
G. K.
,
2017
, “
A Review on the Progress Towards Improvement in Surface Integrity of Inconel 718 Under High Pressure and Flood Cooling Conditions
,”
Int. J. Adv. Manuf. Technol.
,
91
(
1–4
), pp.
107
125
. 10.1007/s00170-016-9737-3
26.
Thellaputta
,
G. R.
,
Chandra
,
P. S.
, and
Rao
,
C. S. P.
,
2017
, “
Machinability of Nickel Based Superalloys: A Review
,”
Mater. Today Proc.
,
4
(
2
), pp.
3712
3721
. 10.1016/j.matpr.2017.02.266
27.
Wang
,
B.
, and
Liu
,
Z.
,
2018
, “
Influences of Tool Structure, Tool Material and Tool Wear on Machined Surface Integrity During Turning and Milling of Titanium and Nickel Alloys : a Review
,” pp.
1925
1975
. 10.1007/s00170-018-2314-1
28.
Special Metals
. “
Inconel alloy 718
,” http://www.specialmetals.com/assets/smc/documents/inconel_alloy_718.pdf, Accessed March 19, 2018.
29.
Bhadeshia
,
H. K. D. H.
Nickel Based Superalloys
,”
Cambridge Website, 2003
, http://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html, Accessed March 19, 2018.
30.
Davis
,
J. R.
, and
Committee
,
A. S. M. I. H.
,
1997
, “
ASM Specialty Handbook: Heat-Resistant Materials
,”
ASM Specialty Handbook: Heat-Resistant Materials
, p.
36
.
31.
Gribbin
,
S.
,
Ghorbanpour
,
S.
,
Ferreri
,
N. C.
,
Bicknell
,
J.
,
Tsukrov
,
I.
, and
Knezevic
,
M.
,
2019
, “
Role of Grain Structure, Grain Boundaries, Crystallographic Texture, Precipitates, and Porosity on Fatigue Behavior of Inconel 718 at Room and Elevated Temperatures
,”
Mater. Charact.
,
149
, pp.
184
197
. 10.1016/j.matchar.2019.01.028
32.
Reed
,
R. C.
,
2006
,
The Superalloys Fundamentals and Applications
, vol.
9780521859
.
33.
Sundararaman
,
M.
,
Mukhopadhyay
,
P.
, and
Banerjee
,
S.
,
1997
, “
Carbide Precipitation in Nickel Base Superalloys 718 and 625 and Their Effect on Mechanical Properties
,”
Superalloys 718, 625, 706 and Various Derivatives (1997)
, pp.
367
378
.
34.
Zhou
,
J.
,
Bushlya
,
V.
,
Avdovic
,
P.
, and
Ståhl
,
J. E.
,
2012
, “
Study of Surface Quality in High Speed Turning of Inconel 718 with Uncoated and Coated CBN Tools
,”
Int. J. Adv. Manuf. Technol.
,
58
(
1–4
), pp.
141
151
. 10.1007/s00170-011-3374-7
35.
Sui
,
S.
,
Tan
,
H.
,
Chen
,
J.
,
Zhong
,
C.
,
Li
,
Z.
,
Fan
,
W.
,
Gasser
,
A.
, and
Huang
,
W.
,
2019
, “
The Influence of Laves Phases on the Room Temperature Tensile Properties of Inconel 718 Fabricated by Powder Feeding Laser Additive Manufacturing
,”
Acta Mater.
,
164
, pp.
413
427
. 10.1016/j.actamat.2018.10.032
36.
Chen
,
Z.
,
Colliander
,
M. H.
,
Sundell
,
G.
,
Peng
,
R. L.
,
Zhou
,
J.
,
Johansson
,
S.
, and
Moverare
,
J.
,
2017
, “
Nano-scale Characterization of White Layer in Broached Inconel 718
,”
Mater. Sci. Eng. A
,
684
, pp.
373
384
. 10.1016/j.msea.2016.12.045
37.
Zhou
,
J. M.
,
Bushlya
,
V.
,
Peng
,
R. L.
,
Johansson
,
S.
,
Avdovic
,
P.
, and
Stahl
,
J. E.
,
2011
, “
Effects of Tool Wear on Subsurface Deformation of Nickelbased Superalloy
,”
Procedia Eng.
,
19
, pp.
407
413
. 10.1016/j.proeng.2011.11.133
38.
Cantero
,
J. L.
,
Díaz-Álvarez
,
J.
,
Miguélez
,
M. H.
, and
Marín
,
N. C.
,
2013
, “
Analysis of Tool Wear Patterns in Finishing Turning of Inconel 718
,”
Wear
,
297
(
1–2
), pp.
885
894
. 10.1016/j.wear.2012.11.004
39.
Hoier
,
P.
,
2018
, “
Microstructural Characteristics of Alloy 718 and Waspaloy and Their Influence on Flank Wear During Turning,” To be Publ
,”
Wear
,
400–401
(
Sept. 2017
), pp.
184
193
. 10.1016/j.wear.2018.01.011
40.
Thakur
,
D. G.
,
Ramamoorthy
,
B.
, and
Vijayaraghavan
,
L.
,
2009
, “
Machinability Investigation of Inconel 718 in High-Speed Turning
,”
Int. J. Adv. Manuf. Technol.
,
45
(
5–6
), pp.
421
429
. 10.1007/s00170-009-1987-x
41.
Xavior
,
M. A.
,
Manohar
,
M.
,
Jeyapandiarajan
,
P.
, and
Madhukar
,
P. M.
,
2017
, “
Tool Wear Assessment During Machining of Inconel 718
,”
Procedia Eng.
,
174
, pp.
1000
1008
. 10.1016/j.proeng.2017.01.252
42.
Khan
,
S. A.
,
Soo
,
S. L.
,
Aspinwall
,
D. K.
,
Sage
,
C.
,
Harden
,
P.
,
Fleming
,
M.
,
White
,
A.
, and
M'Saoubi
,
R.
,
2012
, “
Tool Wear/Life Evaluation When Finish Turning Inconel 718 Using PCBN Tooling
,”
Procedia CIRP
,
1
(
1
), pp.
283
288
. 10.1016/j.procir.2012.04.051
43.
Grzesik
,
W.
,
Niesłony
,
P.
,
Habrat
,
W.
,
Sieniawski
,
J.
, and
Laskowski
,
P.
,
2018
, “
Investigation of Tool Wear in the Turning of Inconel 718 Superalloy in Terms of Process Performance and Productivity Enhancement
,”
Tribol. Int.
,
118
(
Sept. 2017
), pp.
337
346
. 10.1016/j.triboint.2017.10.005
44.
Thakur
,
D. G.
,
Ramamoorthy
,
B.
, and
Vijayaraghavan
,
L.
,
2009
, “
Study on the Machinability Characteristics of Superalloy Inconel 718 During High Speed Turning
,”
Mater. Des.
,
30
(
5
), pp.
1718
1725
. 10.1016/j.matdes.2008.07.011
45.
Bhatt
,
A.
,
Attia
,
H.
,
Vargas
,
R.
, and
Thomson
,
V.
,
2010
, “
Wear Mechanisms of WC Coated and Uncoated Tools in Finish Turning of Inconel 718
,”
Tribol. Int.
,
43
(
5–6
), pp.
1113
1121
. 10.1016/j.triboint.2009.12.053
46.
Costes
,
J. P. P.
,
Guillet
,
Y.
,
Poulachon
,
G.
, and
Dessoly
,
M.
,
2007
, “
Tool-life and Wear Mechanisms of CBN Tools in Machining of Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1081
1087
. 10.1016/j.ijmachtools.2006.09.031
47.
Altin
,
A.
,
Nalbant
,
M.
, and
Taskesen
,
A.
,
2007
, “
The Effects of Cutting Speed on Tool Wear and Tool Life When Machining Inconel 718 With Ceramic Tools
,”
Mater. Des.
,
28
(
9
), pp.
2518
2522
. 10.1016/j.matdes.2006.09.004
48.
Field
,
M.
, and
Kahles
,
J. F.
,
1964
, “
The Surface Integrity of Machined and Ground High Strength Steels
,”
DMIC Rep.
,
210
, pp.
54
77
.
49.
Davim
,
J. P.
,
2010
,
Surface Integrity in Machining
.
50.
Fan
,
Y. H.
,
Hao
,
Z. P.
,
Zheng
,
M. L.
,
Sun
,
F. L.
, and
Yang
,
S. C.
,
2013
, “
Study of Surface Quality in Machining Nickel-Based Alloy Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2659
2667
. 10.1007/s00170-013-5225-1
51.
Soo
,
S. L.
,
Khan
,
S. A.
,
Aspinwall
,
D. K.
,
Harden
,
P.
,
Mantle
,
A. L.
,
Kappmeyer
,
G.
,
Pearson
,
D.
, and
M'Saoubi
,
R.
,
Jan. 2016
, “
High Speed Turning of Inconel 718 Using PVD-Coated PCBN Tools
,”
CIRP Ann.—Manuf. Technol.
,
65
(
1
), pp.
89
92
. 10.1016/j.cirp.2016.04.044
52.
Arunachalam
,
R. M.
,
Mannan
,
M. A.
, and
Spowage
,
A. C.
,
2004
, “
Residual Stress and Surface Roughness When Facing age Hardened Inconel 718 With CBN and Ceramic Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
9
), pp.
879
887
. 10.1016/j.ijmachtools.2004.02.016
53.
Madariaga
,
A.
,
Esnaola
,
J. A.
,
Fernandez
,
E.
,
Arrazola
,
P. J.
,
Garay
,
A.
, and
Morel
,
F.
,
2014
, “
Analysis of Residual Stress and Work-Hardened Profiles on Inconel 718 When Face Turning With Large-Nose Radius Tools
,”
Int. J. Adv. Manuf. Technol.
,
71
(
9–12
), pp.
1587
1598
. 10.1007/s00170-013-5585-6
54.
Sharman
,
A. R. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2015
, “
The Effect of Tool Nose Radius on Surface Integrity and Residual Stresses When Turning Inconel 718???
,”
J. Mater. Process. Technol.
,
216
, pp.
123
132
. 10.1016/j.jmatprotec.2014.09.002
55.
Umbrello
,
D.
,
2013
, “
Investigation of Surface Integrity in dry Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
69
(
9–12
), pp.
2183
2190
. 10.1007/s00170-013-5198-0
56.
Sharman
,
A. R. C. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2004
, “
Workpiece Surface Integrity and Tool Life Issues When Turning Inconel 718TM Nickel Based Superalloy
,”
Mach. Sci. Technol.
,
8
(
3
), pp.
399
414
. 10.1081/MST-200039865
57.
Soo
,
S. L.
,
Aspinwall
,
D. K.
, and
Dewes
,
R. C.
,
2004
, “
Three-dimensional Finite Element Modelling of High-Speed Milling of Inconel 718
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
218
(
11
), pp.
1555
1561
. 10.1243/0954405042418473
58.
D’Addona
,
D. M.
,
Raykar
,
S. J.
, and
Narke
,
M. M.
,
2017
, “
High Speed Machining of Inconel 718: Tool Wear and Surface Roughness Analysis
,”
Procedia CIRP
,
62
, pp.
269
274
. 10.1016/j.procir.2017.03.004
59.
Shokrani
,
A.
,
Dhokia
,
V.
,
Newman
,
S. T.
, and
Imani-Asrai
,
R.
,
2012
, “
An Initial Study of the Effect of Using Liquid Nitrogen Coolant on the Surface Roughness of Inconel 718 Nickel-Based Alloy in CNC Milling
,”
Procedia CIRP
,
3
(
1
), pp.
121
125
. 10.1016/j.procir.2012.07.022
60.
Iturbe
,
A.
,
Hormaetxe
,
E.
,
Garay
,
A.
, and
Arrazola
,
P. J.
,
2016
, “
Surface Integrity Analysis When Machining Inconel 718 with Conventional and Cryogenic Cooling
,”
Procedia CIRP
,
45
(
Table 1
), pp.
67
70
. 10.1016/j.procir.2016.02.095
61.
Nataraj
,
M.
,
Ramamoorthy
,
M.
, and
Pradeep Kumar
,
M.
,
2015
, “
Study on Surface Integrity of High Speed Turning of Inconel 718 Using Taguchi DOE Approach
,”
Int. J. Appl. Eng. Res.
,
10
(
2
), pp.
4191
4200
.
62.
Priarone
,
P. C.
,
Robiglio
,
M.
,
Settineri
,
L.
, and
Tebaldo
,
V.
,
2016
, “
Modelling of Specific Energy Requirements in Machining as a Function of Tool and Lubricoolant Usage
,”
CIRP Ann.—Manuf. Technol.
,
65
(
1
), pp.
25
28
. 10.1016/j.cirp.2016.04.108
63.
Marinescu
,
I.
, and
Axinte
,
D.
,
2009
, “
A Time-Frequency Acoustic Emission-Based Monitoring Technique to Identify Workpiece Surface Malfunctions in Milling with Multiple Teeth Cutting Simultaneously
,”
Int. J. Mach. Tools Manuf.
,
49
(
1
), pp.
53
65
. 10.1016/j.ijmachtools.2008.08.002
64.
Marinescu
,
I.
, and
Axinte
,
D. A.
,
2008
, “
A Critical Analysis of Effectiveness of Acoustic Emission Signals to Detect Tool and Workpiece Malfunctions in Milling Operations
,”
Int. J. Mach. Tools Manuf.
,
48
(
10
), pp.
1148
1160
. 10.1016/j.ijmachtools.2008.01.011
65.
Pawade
,
R. S.
, and
Joshi
,
S. S.
,
2012
, “
Analysis of Acoustic Emission Signals and Surface Integrity in the High-Speed Turning of Inconel 718
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
226
(
1
), pp.
3
27
. 10.1177/0954405411407656
66.
Liu
,
C.
,
Ren
,
C.
,
Wang
,
G.
,
Yang
,
Y.
, and
Zhang
,
L.
,
2015
, “
Study on Surface Defects in Milling Inconel 718 Super Alloy
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1723
1730
. 10.1007/s12206-015-0345-1
67.
Zhou
,
J. M.
,
Bushlya
,
V.
, and
Stahl
,
J. E.
,
2012
, “
An Investigation of Surface Damage in the High Speed Turning of Inconel 718 With Use of Whisker Reinforced Ceramic Tools
,”
J. Mater. Process. Technol.
,
212
(
2
), pp.
372
384
. 10.1016/j.jmatprotec.2011.09.022
68.
M’Saoubi
,
R.
,
Larsson
,
T.
,
Outeiro
,
J.
,
Guo
,
Y.
,
Suslov
,
S.
,
Saldana
,
C.
, and
Chandrasekar
,
S.
,
Jan. 2012
, “
Surface Integrity Analysis of Machined Inconel 718 Over Multiple Length Scales
,”
CIRP Ann.—Manuf. Technol.
,
61
(
1
), pp.
99
102
. 10.1016/j.cirp.2012.03.058
69.
Ranganath
,
H. S.
, and
Guo
,
C.
,
2009
, “
Experimental Investigations Into the Carbide Cracking Phenomenon on Inconel 718 Superalloy Material
,”
Int. Manuf. Sci. Eng. Conf.
,
2
, pp.
33
39
. 10.1115/msec2009-84085
70.
Bushlya
,
V.
,
Zhou
,
J. M.
,
Lenrick
,
F.
,
Avdovic
,
P.
, and
Ståhlan
,
J. E.
,
2011
, “
Characterization of White Layer Generated When Turning Aged Inconel 718
,”
Procedia Eng.
,
19
, pp.
60
66
. 10.1016/j.proeng.2011.11.080
71.
M’Saoubi
,
R.
,
Axinte
,
D.
,
Herbert
,
C.
,
Hardy
,
M.
, and
Salmon
,
P.
,
2014
, “
Surface Integrity of Nickel-Based Alloys Subjected to Severe Plastic Deformation by Abusive Drilling
,”
CIRP Ann.—Manuf. Technol.
,
63
(
1
), pp.
61
64
. 10.1016/j.cirp.2014.03.067
72.
Li
,
W.
,
Guo
,
Y. B. B.
,
Barkey
,
M. E. E.
, and
Jordon
,
J. B. B.
,
2014
, “
Effect Tool Wear During end Milling on the Surface Integrity and Fatigue Life of Inconel 718
,”
Procedia CIRP
,
14
, pp.
546
551
. 10.1016/j.procir.2014.03.056
73.
Rahim
,
E. A.
, and
Sasahara
,
H.
,
2011
, “
An Analysis of Surface Integrity When Drilling Inconel 718 Using Palm oil and Synthetic Ester Under MQL Condition
,”
Mach. Sci. Technol.
,
15
(
1
), pp.
76
90
. 10.1080/10910344.2011.557967
74.
Sanchez
,
J. A.
,
Pombo
,
I.
,
Alberdi
,
R.
,
Izquierdo
,
B.
,
Ortega
,
N.
,
Plaza
,
S.
, and
Martinez-Toledano
,
J.
,
2010
, “
Machining Evaluation of a Hybrid MQL-CO2grinding Technology
,”
J. Clean. Prod.
,
18
(
18
), pp.
1840
1849
. 10.1016/j.jclepro.2010.07.002
75.
Sharman
,
A. R. C. R. C. C.
,
Hughes
,
J. I. I.
, and
Ridgway
,
K.
,
Apr. 2006
, “
An Analysis of the Residual Stresses Generated in Inconel 718 When Turning
,”
J. Mater. Process. Technol.
,
173
(
3
), pp.
359
367
. 10.1016/j.jmatprotec.2005.12.007
76.
Che-Haron
,
C. H.
, and
Jawaid
,
A.
,
2005
, “
The Effect of Machining on Surface Integrity of Titanium Alloy Ti-6% Al-4% v
,”
J. Mater. Process. Technol.
,
166
(
2
), pp.
188
192
. 10.1016/j.jmatprotec.2004.08.012
77.
Ginting
,
A.
, and
Nouari
,
M.
,
2009
, “
Surface Integrity of dry Machined Titanium Alloys
,”
Int. J. Mach. Tools Manuf.
,
49
(
3–4
), pp.
325
332
. 10.1016/j.ijmachtools.2008.10.011
78.
Warren
,
A. W.
, and
Guo
,
Y. B.
,
2006
, “
On the Clarification of Surface Hardening by Hard Turning and Grinding
,”
Trans. North Am. Manuf. Res. Inst. SME
,
34
(
April
), pp.
309
316
.
79.
Farid
,
A. A.
,
Sharif
,
S.
, and
Namazi
,
H.
,
2008
, “
Effect of Machining Parameters and Cutting Edge Geometry on Surface Integrity When Drilling and Hole Making in Inconel 718
,”
SAE Int. J. Mater. Manuf.
,
2
(
1
), pp.
564
569
. 10.4271/2009-01-1412
80.
Withers
,
P. J.
, and
Bhadeshia
,
H. K. D. H.
,
2001
, “
Residual Stress. Part 1–Measurement Techniques
,”
Mater. Sci. Technol.
,
17
(
April
), pp.
355
365
. 10.1179/026708301101509980
81.
Peng
,
R. L.
,
Zhou
,
J.
,
Johansson
,
S.
,
Billenius
,
A.
,
Bushlya
,
V.
, and
Stahl
,
J.-E.
,
2013
, “
Surface Integrity and the Influence of Tool Wear in High Speed Machining of Inconel 718
,”
13th International Conference on Fracture
,
Beijing, China
,
June 16–21
, pp.
1
10
.
82.
Zhou
,
J.
,
Bushlya
,
V.
,
Peng
,
R. L.
,
Chen
,
Z.
,
Johansson
,
S.
, and
Stahl
,
J. E.
,
Jan. 2014
, “
Analysis of Subsurface Microstructure and Residual Stresses in Machined Inconel 718 with PCBN and Al2O3-SiCwtools
,”
Procedia CIRP
,
13
, pp.
150
155
. 10.1016/j.procir.2014.04.026
83.
Arunachalam
,
R. M. M.
,
Mannan
,
M. A. A.
, and
Spowage
,
A. C. C.
,
Nov. 2004
, “
Surface Integrity When Machining age Hardened Inconel 718 With Coated Carbide Cutting Tools
,”
Int. J. Mach. Tools Manuf.
,
44
(
14
), pp.
1481
1491
. 10.1016/j.ijmachtools.2004.05.005
84.
Bushlya
,
V.
,
Zhou
,
J.
, and
Ståhl
,
J. E.
,
2012
, “
Effect of Cutting Conditions on Machinability of Superalloy Inconel 718 During High Speed Turning With Coated and Uncoated PCBN Tools
,”
Procedia CIRP
,
3
(
1
), pp.
370
375
. 10.1016/j.procir.2012.07.064
85.
Coelho
,
R. T.
,
Silva
,
L. R.
,
Braghini
,
A.
, and
Bezerra
,
A. A.
,
2004
, “
Some Effects of Cutting Edge Preparation and Geometric Modifications When Turning INCONEL 718TM at High Cutting Speeds
,”
J. Mater. Process. Technol.
,
148
(
1
), pp.
147
153
. 10.1016/j.jmatprotec.2004.02.001
86.
Madariaga
,
A.
,
Kortabarria
,
A.
,
Hormaetxe
,
E.
,
Garay
,
A.
, and
Arrazola
,
P. J.
,
2016
, “
Influence of Tool Wear on Residual Stresses When Turning Inconel 718
,”
Procedia CIRP
,
45
, pp.
267
270
. 10.1016/j.procir.2016.02.359
87.
Huang
,
Z.
,
He
,
S.
,
Kejia
,
Z.
,
Zhang
,
X.
, and
Ding
,
H.
,
2016
, “
An Analysis of Cutting Parameters, Coated Materials and Nose Radii on Residual Stresses When Turning Inconel 718
,”
Procedia CIRP
,
46
, pp.
368
371
. 10.1016/j.procir.2016.03.123
88.
Jafarian
,
F.
,
2019
, “
3D Modeling of Recrystallized Layer Depth and Residual Stress in dry Machining of Nickel - Based Alloy
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
41
(
4
), pp.
1
10
. 10.1007/s40430-019-1707-x
89.
Chen
,
Z.
,
Peng
,
R. L.
,
Avdovic
,
P.
,
Moverare
,
J.
,
Karlsson
,
F.
,
Zhou
,
J. M.
, and
Johansson
,
S.
,
2014
, “
Analysis of Thermal Effect on Residual Stresses of Broached Inconel 718
,”
Adv. Mater. Res.
,
996
, pp.
574
579
. 10.4028/www.scientific.net/AMR.996.574
90.
Archard
,
J. F.
,
Hirst
,
W.
, and
Allibone
,
T. E.
,
1956
, “
The Wear of Metals Under Unlubricated Conditions
,”
Proc. R. Soc. London. Ser. A. Math. Phys. Sci.
,
236
(
1206
), pp.
397
410
. 10.1098/rspa.1956.0144
91.
Shaw
,
M. C.
,
2005
,
Metal Cutting Principles: Chapter 3
,
no. 5
.
92.
Pusavec
,
F.
,
Krajnik
,
P.
, and
Kopac
,
J.
,
2010
, “
Transitioning to Sustainable Production—Part I: Application on Machining Technologies
,”
J. Clean. Prod.
,
18
(
2
), pp.
174
184
. 10.1016/j.jclepro.2009.08.010
93.
Klocke
,
F.
, and
Eisenblätter
,
G.
,
Jan. 1997
, “
Dry Cutting
,”
CIRP Ann.
,
46
(
2
), pp.
519
526
. 10.1016/S0007-8506(07)60877-4
94.
Kortabarria
,
A.
,
Madariaga
,
A.
,
Fernandez
,
E.
,
Esnaola
,
J. A.
, and
Arrazola
,
P. J.
,
2011
, “
A Comparative Study of Residual Stress Profiles on Inconel 718 Induced by dry Face Turning
,”
Procedia Eng.
,
19
, pp.
228
234
. 10.1016/j.proeng.2011.11.105
95.
Fan
,
Y.
,
Hao
,
Z.
,
Lin
,
J.
, and
Yu
,
Z.
,
2015
, “
New Observations on Tool Wear Mechanism in Machining Inconel 718 Under Water Vapor + Air Cooling Lubrication Cutting Conditions
,”
J. Clean. Prod.
,
90
, pp.
381
387
. 10.1016/j.jclepro.2014.11.049
96.
Ramanujam
,
R.
,
Venkatesan
,
K.
,
Saxena
,
V.
, and
Joseph
,
P.
,
2014
, “
Modeling and Optimization of Cutting Parameters in Dry Turning of Inconel 718 Using Coated Carbide Inserts
,”
Procedia Mater. Sci.
,
5
, pp.
2550
2559
. 10.1016/j.mspro.2014.07.508
97.
Nalbant
,
M.
,
Altin
,
A.
, and
Gökkaya
,
H.
,
2007
, “
The Effect of Coating Material and Geometry of Cutting Tool and Cutting Speed on Machinability Properties of Inconel 718 Super Alloys
,”
Mater. Des.
,
28
(
5
), pp.
1719
1724
. 10.1016/j.matdes.2006.03.003
98.
Li
,
L.
,
He
,
N.
,
Wang
,
M.
, and
Wang
,
Z. G.
,
Oct. 2002
, “
High Speed Cutting of Inconel 718 with Coated Carbide and Ceramic Inserts
,”
J. Mater. Process. Technol.
,
129
(
1–3
), pp.
127
130
. 10.1016/s0924-0136(02)00590-3
99.
Pawade
,
R. S. S.
,
Joshi
,
S. S.
,
Brahmankar
,
P. K. K.
, and
Rahman
,
M.
,
Oct. 2007
, “
An Investigation of Cutting Forces and Surface Damage in High-Speed Turning of Inconel 718
,”
J. Mater. Process. Technol.
,
192–193
, pp.
139
146
. 10.1016/j.jmatprotec.2007.04.049
100.
Dixit
,
U. S.
,
Sarma
,
D. K.
, and
Davim
,
J. P.
,
2012
,
Green Manufacturing, no. 9781461423072
.
101.
Rocol
. “
Cutting Fluids—ULTRACUT® 320 Technical Data
,” https://www.rocol.com/products/ultracut320-ep-cutting-grinding-fluid, Accessed May 28, 2020.
102.
Morris Lubricants
. “
SUPERCUT 1000 Product Information
,” https://www.morrislubricants.co.uk/products/237_5dcbd32fb8f33.pdf, Accessed May 28, 2020.
103.
Milacron
. “
Waterbased Metalworking Fluids: Proper Mixing Practices
,” http://www.cimcool.ca/uploads/downloads/TechRpt_ProperMixPrac_EN_Nov05.pdf, Accessed May 28, 2020.
104.
Sadat
,
A. B.
,
1987
, “
Surface Region Damage of Machined Inconel-718 Nickel-Base Superalloy Using Natural and Controlled Contact Length Tools
,”
Wear
,
119
(
2
), pp.
225
235
. 10.1016/0043-1648(87)90112-8
105.
Kadam
,
G.
, and
Pawade
,
R.
,
2017
, “
Influence of Machining Environment on Surface Integrity in HSM of Inconel 718 With Productivity Perspective
,”
137
, pp.
89
93
. 10.2991/iccasp-16.2017.15
106.
Tamil Alagan
,
N.
,
Hoier
,
P.
,
Zeman
,
P.
,
Klement
,
U.
,
Beno
,
T.
, and
Wretland
,
A.
,
2019
, “
Effects of High-Pressure Cooling in the Flank and Rake Faces of WC Tool on the Tool Wear Mechanism and Process Conditions in Turning of Alloy 718
,”
Wear
,
434–435
, p.
102922
. 10.1016/j.wear.2019.05.037
107.
Hong
,
S. Y.
, and
Zhao
,
Z.
,
1999
, “
Thermal Aspects, Material Considerations and Cooling Strategies in Cryogenic Machining
,”
Clean Technol. Environ. Policy
,
1
(
2
), pp.
107
116
. 10.1007/s100980050016
108.
Öjmertz
,
K. M. C.
, and
Oskarson
,
H. B.
,
1999
, “
Wear on sic-Whiskers Reinforced Ceramic Inserts When Cutting Inconel With Waterjet Assistance
,”
Tribol. Trans.
,
42
(
3
), pp.
471
478
. 10.1080/10402009908982243
109.
Polvorosa
,
R.
,
Suárez
,
A.
,
de Lacalle
,
L. N. L.
,
Cerrillo
,
I.
,
Wretland
,
A.
, and
Veiga
,
F.
,
2017
, “
Tool Wear on Nickel Alloys With Different Coolant Pressures: Comparison of Alloy 718 and Waspaloy
,”
J. Manuf. Process.
,
26
, pp.
44
56
. 10.1016/j.jmapro.2017.01.012
110.
Fang
,
Z.
, and
Obikawa
,
T.
,
2017
, “
Turning of Inconel 718 Using Inserts with Cooling Channels Under High Pressure Jet Coolant Assistance
,”
J. Mater. Process. Technol.
,
247
(
March
), pp.
19
28
. 10.1016/j.jmatprotec.2017.03.032
111.
Busch
,
K.
,
Hochmuth
,
C.
,
Pause
,
B.
,
Stoll
,
A.
, and
Wertheim
,
R.
,
2016
, “
Investigation of Cooling and Lubrication Strategies for Machining High-Temperature Alloys
,”
Procedia CIRP
,
41
, pp.
835
840
. 10.1016/j.procir.2015.10.005
112.
Ezugwu
,
E. O. O.
, and
Bonney
,
J.
,
Nov. 2004
, “
Effect of High-Pressure Coolant Supply When Machining Nickel-Base, Inconel 718, Alloy With Coated Carbide Tools
,”
J. Mater. Process. Technol.
,
153–154
(
1–3
), pp.
1045
1050
. 10.1016/j.jmatprotec.2004.04.329
113.
Raykar
,
S.
, and
Dabade
,
U.
,
2017
, “
Optimization of High Pressure Coolant Assisted Turning of Inconel 718 Using TOPSIS
,”
137
(
1
), pp.
113
120
. 10.2991/iccasp-16.2017.19
114.
Courbon
,
C.
,
Kramar
,
D.
,
Krajnik
,
P.
,
Pusavec
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2009
, “
Investigation of Machining Performance in High-Pressure jet Assisted Turning of Inconel 718: An Experimental Study
,”
Int. J. Mach. Tools Manuf.
,
49
(
14
), pp.
1114
1125
. 10.1016/j.ijmachtools.2009.07.010
115.
Hoier
,
P.
,
Klement
,
U.
,
Tamil Alagan
,
N.
,
Beno
,
T.
, and
Wretland
,
A.
,
2017
, “
Flank Wear Characteristics of WC-Co Tools When Turning Alloy 718 with High-Pressure Coolant Supply
,”
J. Manuf. Process.
,
30
, pp.
116
123
. 10.1016/j.jmapro.2017.09.017
116.
Sharman
,
A. R. C.
,
Hughes
,
J. I.
, and
Ridgway
,
K.
,
2008
, “
Surface Integrity and Tool Life When Turning Inconel 718 Using Ultra-High Pressure and Flood Coolant Systems
,”
Proc. Inst. Mech. Eng. Part B J. Eng. Manuf.
,
222
(
6
), pp.
653
664
. 10.1243/09544054JEM936
117.
Ezugwu
,
E. O.
,
Bonney
,
J.
,
Fadare
,
D. A.
, and
Sales
,
W. F.
,
2005
, “
Machining of Nickel-Base, Inconel 718, Alloy with Ceramic Tools Under Finishing Conditions with Various Coolant Supply Pressures
,”
J. Mater. Process. Technol.
,
162–163
(
SPEC. ISS.
), pp.
609
614
. 10.1016/j.jmatprotec.2005.02.144
118.
Vagnorius
,
Z.
, and
Sørby
,
K.
,
2011
, “
Effect of High-Pressure Cooling on Life of SiAlON Tools in Machining of Inconel 718
,”
Int. J. Adv. Manuf. Technol.
,
54
(
1–4
), pp.
83
92
. 10.1007/s00170-010-2944-4
119.
Fang
,
Z.
, and
Obikawa
,
T.
,
2017
, “
Cooling Performance of Micro-Texture at the Tool Flank Face Under High Pressure jet Coolant Assistance
,”
Precis. Eng.
,
49
, pp.
41
51
. 10.1016/j.precisioneng.2017.01.008
120.
Lv
,
T.
,
Huang
,
S.
,
Hu
,
X.
,
Ma
,
Y.
, and
Xu
,
X.
,
2018
, “
Tribological and Machining Characteristics of a Minimum Quantity Lubrication (MQL) Technology Using GO/SiO2hybrid Nanoparticle Water-Based Lubricants as Cutting Fluids
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2931
2942
. 10.1007/s00170-018-1725-3
121.
Yazid
,
M. Z. A.
,
Ibrahim
,
G. A.
,
Said
,
A. Y. M.
,
CheHaron
,
C. H.
, and
Ghani
,
J. A.
,
2011
, “
Surface Integrity of Inconel 718 When Finish Turning with PVD Coated Carbide Tool Under MQL
,”
Procedia Eng.
,
19
, pp.
396
401
. 10.1016/j.proeng.2011.11.131
122.
Thamizhmanii
,
S.
,
Hasan
,
S.
, and
Hasan
,
R. S.
,
2009
, “
A Study of Minimum Quantity Lubrication on Inconel 718 Steel
,”
Arch. Mater. Sci. Eng.
,
39
(
1
), pp.
38
44
.
123.
Obikawa
,
T.
,
Kamata
,
Y.
,
Asano
,
Y.
,
Nakayama
,
K.
, and
Otieno
,
A. W.
,
2008
, “
Micro-liter Lubrication Machining of Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
48
(
15
), pp.
1605
1612
. 10.1016/j.ijmachtools.2008.07.011
124.
Kamata
,
Y.
, and
Obikawa
,
T.
,
2007
, “
High Speed MQL Finish-Turning of Inconel 718 with Different Coated Tools
,”
J. Mater. Process. Technol.
,
192–193
, pp.
281
286
. 10.1016/j.jmatprotec.2007.04.052
125.
Marques
,
A.
,
Guimaraes
,
C.
,
da Silva
,
R. B.
,
da Penha Cindra Fonseca
,
M.
,
Sales
,
W. F.
, and
Machado
,
A. R.
,
2016
, “
Surface Integrity Analysis of Inconel 718 After Turning with Different Solid Lubricants Dispersed in Neat Oil Delivered by MQL
,”
Procedia Manuf.
,
5
, pp.
609
620
. 10.1016/j.promfg.2016.08.050
126.
Paturi
,
U. M. R.
,
Maddu
,
Y. R.
,
Maruri
,
R. R.
, and
Narala
,
S. K. R.
,
2016
, “
Measurement and Analysis of Surface Roughness in WS2 Solid Lubricant Assisted Minimum Quantity Lubrication (MQL) Turning of Inconel 718
,”
Procedia CIRP
,
40
, pp.
138
143
. 10.1016/j.procir.2016.01.082
127.
Ali
,
M. A. M.
,
Khalil
,
A. N. M.
,
Azmi
,
A. I.
, and
Salleh
,
H. M.
,
2017
, “
Optimization of Cutting Parameters for Surface Roughness Under MQL, Using Al 2 O 3 Nanolubricant, During Turning of Inconel 718
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
226
, p.
012067
. 10.1088/1757-899X/226/1/012067
128.
Liao
,
Y. S.
,
Liao
,
C. H.
, and
Lin
,
H. M.
,
2017
, “
Study of oil-Water Ratio and Flow Rate of MQL Fluid in High Speed Milling of Inconel 718
,”
Int. J. Precis. Eng. Manuf.
,
18
(
2
), pp.
257
262
. 10.1007/s12541-017-0033-4
129.
Zhang
,
S.
,
Li
,
J. F.
, and
Wang
,
Y. W.
,
2012
, “
Tool Life and Cutting Forces in end Milling Inconel 718 Under dry and Minimum Quantity Cooling Lubrication Cutting Conditions
,”
J. Clean. Prod.
,
32
, pp.
81
87
. 10.1016/j.jclepro.2012.03.014
130.
Park
,
K. H.
,
Olortegui-Yume
,
J.
,
Yoon
,
M. C.
, and
Kwon
,
P.
,
2010
, “
A Study on Droplets and Their Distribution for Minimum Quantity Lubrication (MQL)
,”
Int. J. Mach. Tools Manuf.
,
50
(
9
), pp.
824
833
. 10.1016/j.ijmachtools.2010.05.001
131.
Shokrani
,
A.
,
Dhokia
,
V.
,
Muñoz-Escalona
,
P.
, and
Newman
,
S. T.
,
2013
, “
State-of-the-art Cryogenic Machining and Processing
,”
Int. J. Comput. Integr. Manuf.
,
26
(
7
), pp.
616
648
. 10.1080/0951192X.2012.749531
132.
Wang
,
Z. Y.
,
Rajurkar
,
K. P.
,
Fan
,
J.
,
Lei
,
S.
,
Shin
,
Y. C.
, and
Petrescu
,
G.
,
2003
, “
Hybrid Machining of Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
43
(
13
), pp.
1391
1396
. 10.1016/S0890-6955(03)00134-2
133.
Pusavec
,
F.
,
Deshpande
,
A.
,
Yang
,
S.
,
M'Saoubi
,
R.
,
Kopac
,
J.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2015
, “
Sustainable Machining of High Temperature Nickel Alloy—Inconel 718: Part 2—Chip Breakability and Optimization
,”
J. Clean. Prod.
,
87
(
1
), pp.
941
952
. 10.1016/j.jclepro.2014.10.085
134.
Bagherzadeh
,
A.
, and
Budak
,
E.
,
2018
, “
Investigation of Machinability in Turning of Difficult-to-cut Materials Using a new Cryogenic Cooling Approach
,”
Tribol. Int.
,
119
, pp.
510
520
. 10.1016/j.triboint.2017.11.033
135.
Kenda
,
J.
,
Pusavec
,
F.
, and
Kopac
,
J.
,
2011
, “
Analysis of Residual Stresses in Sustainable Cryogenic Machining of Nickel Based Alloy—Inconel 718
,”
ASME J. Manuf. Sci. Eng.
,
133
(
4
), p.
041009
. 10.1115/1.4004610
136.
Hribersek
,
M.
,
Sajn
,
V.
,
Pusavec
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2017
, “
The Procedure of Solving the Inverse Problem for Determining Surface Heat Transfer Coefficient Between Liquefied Nitrogen and Inconel 718 Workpiece in Cryogenic Machining
,”
Procedia CIRP
,
58
, pp.
617
622
. 10.1016/j.procir.2017.03.227
137.
Tebaldo
,
V.
,
di Confiengo
,
G. G.
, and
Faga
,
M. G.
,
2017
, “
Sustainability in Machining: ‘Eco-Friendly’ Turning of Inconel 718. Surface Characterisation and Economic Analysis
,”
J. Clean. Prod.
,
140
, pp.
1567
1577
. 10.1016/j.jclepro.2016.09.216
138.
Kaynak
,
Y.
,
2014
, “
Evaluation of Machining Performance in Cryogenic Machining of Inconel 718 and Comparison with dry and MQL Machining
,”
Int. J. Adv. Manuf. Technol.
,
72
(
5–8
), pp.
919
933
. 10.1007/s00170-014-5683-0
139.
Hribersek
,
M.
,
Pusavec
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2018
, “
Modeling of Machined Surface Characteristics in Cryogenic Orthogonal Turning of Inconel 718
,”
Mach. Sci. Technol.
,
22
(
5
), pp.
1
22
. 10.1080/10910344.2017.1415935
140.
Devillez
,
A.
,
Schneider
,
F.
,
Dominiak
,
S.
,
Dudzinski
,
D.
, and
Larrouquere
,
D.
,
Mar. 2007
, “
Cutting Forces and Wear in dry Machining of Inconel 718 with Coated Carbide Tools
,”
Wear
,
262
(
7–8
), pp.
931
942
. 10.1016/j.wear.2006.10.009
141.
Courbon
,
C.
,
Pusavec
,
F.
,
Dumont
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2013
, “
Tribological Behaviour of Ti6Al4V and Inconel718 Under dry and Cryogenic Conditions—Application to the Context of Machining with Carbide Tools
,”
Tribol. Int.
,
66
, pp.
72
82
. 10.1016/j.triboint.2013.04.010
142.
Uçak
,
N.
, and
Çiçek
,
A.
,
2018
, “
The Effects of Cutting Conditions on Cutting Temperature and Hole Quality in Drilling of Inconel 718 Using Solid Carbide Drills
,”
J. Manuf. Process.
,
31
, pp.
662
673
. 10.1016/j.jmapro.2018.01.003
143.
Musfirah
,
A. H.
,
Ghani
,
J. A.
, and
Haron
,
C. H. C.
,
2017
, “
Tool Wear and Surface Integrity of Inconel 718 in dry and Cryogenic Coolant at High Cutting Speed
,”
Wear
,
376–377
, pp.
125
133
. 10.1016/j.wear.2017.01.031
144.
Ucun
,
I.
,
Aslantas
,
K.
, and
Bedir
,
F.
,
2013
, “
An Experimental Investigation of the Effect of Coating Material on Tool Wear in Micro Milling of Inconel 718 Super Alloy
,”
Wear
,
300
(
1–2
), pp.
8
19
. 10.1016/j.wear.2013.01.103
145.
Thakur
,
A.
, and
Gangopadhyay
,
S.
,
2016
, “
Dry Machining of Nickel-Based Super Alloy as a Sustainable Alternative Using TiN/TiAlN Coated Tool
,”
J. Clean. Prod.
,
129
, pp.
256
268
. 10.1016/j.jclepro.2016.04.074
146.
Shokrani
,
A.
,
Dhokia
,
V.
, and
Newman
,
S. T.
,
2017
, “
Hybrid Cooling and Lubricating Technology for CNC Milling of Inconel 718 Nickel Alloy
,”
Procedia Manuf.
,
11
, pp.
625
632
. 10.1016/j.promfg.2017.07.160
147.
Kumar
,
S.
,
Singh
,
D.
, and
Kalsi
,
N. S.
,
2017
, “
Experimental Investigations of Surface Roughness of Inconel 718 Under Different Machining Conditions
,”
Mater. Today Proc.
,
4
(
2
), pp.
1179
1185
. 10.1016/j.matpr.2017.01.135
148.
Khanna
,
N.
,
Agrawal
,
C.
,
Gupta
,
M. K.
, and
Song
,
Q.
,
2020
, “
Tool Wear and Hole Quality Evaluation in Cryogenic Drilling of Inconel 718 Superalloy
,”
Tribol. Int.
,
143
, p.
2019
. 10.1016/j.triboint.2019.106084
149.
de Paula Oliveira
,
G.
,
Cindra Fonseca
,
M.
, and
Araujo
,
A. C.
,
2017
, “
Analysis of Residual Stress and Cutting Force in end Milling of Inconel 718 Using Conventional Flood Cooling and Minimum Quantity Lubrication
,”
Int. J. Adv. Manuf. Technol.
,
92
(
9–12
), pp.
3265
3272
. 10.1007/s00170-017-0381-3
150.
Deshpande
,
Y. V.
,
Andhare
,
A. B.
, and
Padole
,
P. M.
,
2018
, “
Experimental Results on the Performance of Cryogenic Treatment of Tool and Minimum Quantity Lubrication for Machinability Improvement in the Turning of Inconel 718
,”
J. Brazilian Soc. Mech. Sci. Eng.
,
40
(
1
), p.
6
. 10.1007/s40430-017-0920-8
151.
De Bartolomeis
,
A.
,
Newman
,
S. T.
, and
Shokrani
,
A.
,
2020
, “
Initial Investigation on Surface Integrity When Machining Inconel 718 with Conventional and Electrostatic Lubrication
,”
Procedia CIRP
,
87
, pp.
65
70
. 10.1016/j.procir.2020.02.019
152.
Sharma
,
V. S.
,
Dogra
,
M.
, and
Suri
,
N. M.
,
2009
, “
Cooling Techniques for Improved Productivity in Turning
,”
Int. J. Mach. Tools Manuf.
,
49
(
6
), pp.
435
453
. 10.1016/j.ijmachtools.2008.12.010
153.
Çolak
,
O.
,
2012
, “
Investigation on Machining Performance of Inconel 718 Under High Pressure Cooling Conditions
,”
Stroj. Vestnik/J. Mech. Eng.
,
58
(
11
), pp.
683
690
. 10.5545/sv-jme.2012.730
154.
Çelik
,
A.
,
Sert Alağaç
,
M.
,
Turan
,
S.
,
Kara
,
A.
, and
Kara
,
F.
,
May 2017
, “
Wear Behavior of Solid SiAlON Milling Tools During High Speed Milling of Inconel 718
,”
Wear
,
378–379
, pp.
58
67
. 10.1016/j.wear.2017.02.025
155.
Liu
,
Z. Y.
,
Li
,
C.
,
Fang
,
X. Y.
, and
Guo
,
Y. B.
,
2018
, “
Cumulative Energy Demand and Environmental Impact in Sustainable Machining of Inconel Superalloy
,”
J. Clean. Prod.
10.1016/j.jclepro.2018.01.251
156.
Jawahir
,
I. S.
,
Attia
,
H.
,
Biermann
,
D.
,
Duflou
,
J.
,
Klocke
,
F.
,
Meyer
,
D.
,
Newman
,
S. T.
,
Pusavec
,
F.
,
Putz
,
M.
,
Rech
,
J.
,
Schulze
,
V.
, and
Umbrello
,
D.
,
Jan. 2016
, “
Cryogenic Manufacturing Processes
,”
CIRP Ann.
,
65
(
2
), pp.
713
736
. 10.1016/j.cirp.2016.06.007
157.
Oezkaya
,
E.
,
Beer
,
N.
, and
Biermann
,
D.
,
2016
, “
Experimental Studies and CFD Simulation of the Internal Cooling Conditions When Drilling Inconel 718
,”
Int. J. Mach. Tools Manuf.
,
108
(
June
), pp.
52
65
. 10.1016/j.ijmachtools.2016.06.003
158.
Darshan
,
C.
,
Jain
,
S.
,
Dogra
,
M.
,
Gupta
,
M. K.
,
Mia
,
M.
, and
Haque
,
R.
,
2019
, “
Influence of dry and Solid Lubricant-Assisted MQL Cooling Conditions on the Machinability of Inconel 718 Alloy with Textured Tool
,”
Int. J. Adv. Manuf. Technol.
,
105
(
5–6
), p.
1851
. 10.1007/s00170-019-04544-x
159.
Marques
,
A.
,
Paipa Suarez
,
M.
,
Falco Sales
,
W.
, and
Rocha Machado
,
Á
,
2019
, “
Turning of Inconel 718 with Whisker-Reinforced Ceramic Tools Applying Vegetable-Based Cutting Fluid Mixed with Solid Lubricants by MQL
,”
J. Mater. Process. Technol.
,
266
(
Aug. 2018
), pp.
530
543
. 10.1016/j.jmatprotec.2018.11.032
160.
Pereira
,
O.
,
Urbikain
,
G.
,
Rodríguez
,
A.
,
Fernández-Valdivielso
,
A.
,
Calleja
,
A.
,
Ayesta
,
I.
, and
de Lacalle
,
L. N. L.
,
Jan. 2017
, “
Internal Cryolubrication Approach for Inconel 718 Milling
,”
Procedia Manuf.
,
13
, pp.
89
93
. 10.1016/j.promfg.2017.09.013
You do not currently have access to this content.