Abstract

The powder motion induced by the gas flow has been identified as one of the critical phenomena in laser powder bed fusion processes that significantly affect the build quality. However, the gas dynamics and its induced driving forces for the powder motions have not been well quantified. A numerical model is developed to investigate such powder-gas interactions. With a combination of computational fluid dynamics and particle tracking techniques, the model is capable of simulating the transient gas flow field surrounding the powder and the forces exerted on powder surfaces. The interaction between metal powders and a free jet is investigated with the current model. In the simulation results, the entrainment and the ejection motions of powders with respect to the free jet can be predicted. It is found that the driving forces of these motions are majorly contributed by the pressure differences in the gas flow surrounding the powder, and the powders can also interact with the jet to significantly alter the flow field. Quantities that are difficult to measure by experiments are quantified by the simulations, such as the velocity/pressure fields in the gas as well as the subjected forces and torques on powders. Such quantitative information provides insights about the mechanisms of the powder-gas interaction in laser powder bed fusion processes.

References

References
1.
Huang
,
Y.
,
Leu
,
M. C.
,
Mazumder
,
J.
, and
Donmez
,
A.
,
2015
, “
Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
014001
. 10.1115/1.4028725
2.
Mahmoudi
,
M.
,
Ezzat
,
A. A.
, and
Elwany
,
A.
,
2019
, “
Layerwise Anomaly Detection in Laser Powder-Bed Fusion Metal Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
141
(
3
), p.
031002
. 10.1115/1.4042108
3.
Imani
,
F.
,
Gaikwad
,
A.
,
Montazeri
,
M.
,
Rao
,
P.
,
Yang
,
H.
, and
Reutzel
,
E.
,
2018
, “
Process Mapping and in-Process Monitoring of Porosity in Laser Powder Bed Fusion Using Layerwise Optical Imaging
,”
ASME J. Manuf. Sci. Eng.
,
140
(
10
), p.
101009
. 10.1115/1.4040615
4.
Shrestha
,
S.
,
Starr
,
T.
, and
Chou
,
K.
,
2019
, “
A Study of Keyhole Porosity in Selective Laser Melting: Single-Track Scanning With Micro-CT Analysis
,”
ASME J. Manuf. Sci. Eng.
,
141
(
7
), pp.
1
23
. 10.1115/1.4043622
5.
Bidare
,
P.
,
Bitharas
,
I.
,
Ward
,
R.
,
Attallah
,
M.
, and
Moore
,
A.
,
2018
, “
Fluid and Particle Dynamics in Laser Powder Bed Fusion
,”
Acta Mater.
,
142
, pp.
107
120
. 10.1016/j.actamat.2017.09.051
6.
Ly
,
S.
,
Rubenchik
,
A. M.
,
Khairallah
,
S. A.
,
Guss
,
G.
, and
Matthews
,
M. J.
,
2017
, “
Metal Vapor Micro-jet Controls Material Redistribution in Laser Powder Bed Fusion Additive Manufacturing
,”
Sci. Rep.
,
7
(
1
), p.
4085
. 10.1038/s41598-017-04237-z
7.
Matthews
,
M. J.
,
Guss
,
G.
,
Khairallah
,
S. A.
,
Rubenchik
,
A. M.
,
Depond
,
P. J.
, and
King
,
W. E.
,
2016
, “
Denudation of Metal Powder Layers in Laser Powder Bed Fusion Processes
,”
Acta Mater.
,
114
, pp.
33
42
. 10.1016/j.actamat.2016.05.017
8.
Guo
,
Q.
,
Zhao
,
C.
,
Escano
,
L. I.
,
Young
,
Z.
,
Xiong
,
L.
,
Fezzaa
,
K.
,
Everhart
,
W.
,
Brown
,
B.
,
Sun
,
T.
, and
Chen
,
L.
,
2018
, “
Transient Dynamics of Powder Spattering in Laser Powder Bed Fusion Additive Manufacturing Process Revealed by in-Situ High-Speed High-Energy X-Ray Imaging
,”
Acta Mater.
,
151
, pp.
169
180
. 10.1016/j.actamat.2018.03.036
9.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-time Monitoring of Laser Powder bed Fusion Process Using High-Speed X-ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), p.
3602
. 10.1038/s41598-017-03761-2
10.
Cunningham
,
R.
,
Zhao
,
C.
,
Parab
,
N.
,
Kantzos
,
C.
,
Pauza
,
J.
,
Fezzaa
,
K.
,
Sun
,
T.
, and
Rollett
,
A. D.
,
2019
, “
Keyhole Threshold and Morphology in Laser Melting Revealed by Ultrahigh-Speed X-Ray Imaging
,”
Science
,
363
(
6429
), pp.
849
852
. 10.1126/science.aav4687
11.
Gong
,
H.
,
Rafi
,
K.
,
Gu
,
H.
,
Starr
,
T.
, and
Stucker
,
B.
,
2014
, “
Analysis of Defect Generation in Ti–6Al–4V Parts Made Using Powder bed Fusion Additive Manufacturing Processes
,”
Addit. Manuf.
,
1
, pp.
87
98
. 10.1016/j.addma.2014.08.002
12.
Snyder
,
J. C.
, and
Thole
,
K. A.
,
2020
, “
Understanding Laser Powder Bed Fusion Surface Roughness
,”
ASME J. Manuf. Sci. Eng.
,
142
(
7
), p.
071003
. 10.1115/1.4046504
13.
Nassar
,
A. R.
,
Gundermann
,
M. A.
,
Reutzel
,
E. W.
,
Guerrier
,
P.
,
Krane
,
M. H.
, and
Weldon
,
M. J.
,
2019
, “
Formation Processes for Large Ejecta and Interactions With Melt Pool Formation in Powder Bed Fusion Additive Manufacturing
,”
Sci. Rep.
,
9
(
1
), p.
5038
. 10.1038/s41598-019-41415-7
14.
Moser
,
D.
,
Yuksel
,
A.
,
Cullinan
,
M.
, and
Murthy
,
J.
,
2018
, “
Use of Detailed Particle Melt Modeling to Calculate Effective Melt Properties for Powders
,”
ASME J. Heat Transfer
,
140
(
5
), p.
052301
. 10.1115/1.4038423
15.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
. 10.1016/j.actamat.2016.02.014
16.
Shrestha
,
S.
, and
Kevin Chou
,
Y.
,
2019
, “
A Numerical Study on the Keyhole Formation During Laser Powder Bed Fusion Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
10
), p.
101002
. 10.1115/1.4044100
17.
Körner
,
C.
,
Attar
,
E.
, and
Heinl
,
P.
,
2011
, “
Mesoscopic Simulation of Selective Beam Melting Processes
,”
J. Mater. Process. Technol.
,
211
(
6
), pp.
978
987
. 10.1016/j.jmatprotec.2010.12.016
18.
Bayat
,
M.
,
Thanki
,
A.
,
Mohanty
,
S.
,
Witvrouw
,
A.
,
Yang
,
S.
,
Thorborg
,
J.
,
Tiedje
,
N. S.
, and
Hattel
,
J. H.
,
2019
, “
Keyhole-induced Porosities in Laser-Based Powder Bed Fusion (L-PBF) of Ti6Al4V: High-Fidelity Modelling and Experimental Validation
,”
Addit. Manuf.
,
30
, p.
100835
. 10.1016/j.addma.2019.100835
19.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
. 10.1016/j.actamat.2017.05.061
20.
Yan
,
W.
,
Qian
,
Y.
,
Ge
,
W.
,
Lin
,
S.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2018
, “
Meso-scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation
,”
Mater. Des.
,
141
, pp.
210
219
. 10.1016/j.matdes.2017.12.031
21.
Masmoudi
,
A.
,
Bolot
,
R.
, and
Coddet
,
C.
,
2015
, “
Investigation of the Laser–Powder–Atmosphere Interaction Zone During the Selective Laser Melting Process
,”
J. Mater. Process. Technol.
,
225
, pp.
122
132
. 10.1016/j.jmatprotec.2015.05.008
22.
Mayi
,
Y. A.
,
Dal
,
M.
,
Peyre
,
P.
,
Bellet
,
M.
,
Metton
,
C.
,
Moriconi
,
C.
, and
Fabbro
,
R.
,
2019
, “
Laser-induced Plume Investigated by Finite Element Modelling and Scaling of Particle Entrainment in Laser Powder Bed Fusion
,”
J. Phys. D: Appl. Phys.
,
53
(
7
), p.
075306
. 10.1088/1361-6463/ab5900
23.
Li
,
D.
, and
Merkle
,
C. L.
,
2006
, “
A Unified Framework for Incompressible and Compressible Fluid Flows
,”
J. Hydrodyn. Ser. B
,
18
(
3
), pp.
113
119
. 10.1016/S1001-6058(06)60040-1
24.
Glowinski
,
R.
,
Pan
,
T.-W.
,
Hesla
,
T. I.
,
Joseph
,
D. D.
, and
Periaux
,
J.
,
2001
, “
A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow Past Moving Rigid Bodies: Application to Particulate Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
363
426
. 10.1006/jcph.2000.6542
25.
Norouzi
,
H. R.
,
Zarghami
,
R.
,
Sotudeh-Gharebagh
,
R.
, and
Mostoufi
,
N.
,
2016
,
Coupled CFD-DEM Modeling: Formulation, Implementation and Application to Multiphase Flows
,
John Wiley & Sons
,
Hoboken, NJ
.
26.
Grétarsson
,
J. T.
,
Kwatra
,
N.
, and
Fedkiw
,
R.
,
2011
, “
Numerically Stable Fluid–Structure Interactions Between Compressible Flow and Solid Structures
,”
J. Comput. Phys.
,
230
(
8
), pp.
3062
3084
. 10.1016/j.jcp.2011.01.005
27.
Uhlmann
,
M.
,
2005
, “
An Immersed Boundary Method With Direct Forcing for the Simulation of Particulate Flows
,”
J. Comput. Phys.
,
209
(
2
), pp.
448
476
. 10.1016/j.jcp.2005.03.017
28.
Anwar
,
A. B.
, and
Pham
,
Q.-C.
,
2018
, “
Study of the Spatter Distribution on the Powder Bed During Selective Laser Melting
,”
Addit. Manuf.
,
22
, pp.
86
97
. 10.1016/j.addma.2018.04.036
29.
Gunenthiram
,
V.
,
Peyre
,
P.
,
Schneider
,
M.
,
Dal
,
M.
,
Coste
,
F.
,
Koutiri
,
I.
, and
Fabbro
,
R.
,
2018
, “
Experimental Analysis of Spatter Generation and Melt-Pool Behavior During the Powder bed Laser Beam Melting Process
,”
J. Mater. Process. Technol.
,
251
, pp.
376
386
. 10.1016/j.jmatprotec.2017.08.012
30.
Metals
,
A. S. M. A. S.
,
2004
,
Titanium Ti-6Al-4V (Grade 5), ASM Material Data Sheet
,
ASM Aerospace Specification Metals Inc
.,
FL
.
31.
Michels
,
A.
,
Botzen
,
A.
, and
Schuurman
,
W.
,
1954
, “
The Viscosity of Argon at Pressures up to 2000 Atmospheres
,”
Physica
,
20
(
7–12
), pp.
1141
1148
. 10.1016/S0031-8914(54)80257-6
You do not currently have access to this content.