Abstract

Hydrothermal-assisted transient jet fusion (HTJF) is a powder-based additive manufacturing (AM) method of ceramics, which utilizes a water-mediated hydrothermal mechanism to fuse particles together, eliminating the use of organic binders in forming green bodies and thereby contributing to high green-density parts (>90%) advantageous for fabricating functional materials with high performance. In the HTJF process, a transient solution such as water is selectively deposited into a powder bed in a layer-by-layer fashion followed by a hydrothermal fusion process. Upon the ejection and deposition of a droplet of the transient solution on the surface of the powder bed, the diffusion behavior of the liquid significantly influences the particle fusion and the fabrication accuracy of the HTJF process. Precise control of the liquid diffusion in the powder bed is critical for the fabrication of ceramic structures with both high density and accuracy. In this paper, the dependence of transient solution diffusion on different process parameters (i.e., powder packing density, droplet size, pressure, etc.) in the HTJF process were studied. Both numerical modeling and experimental methods were used to quantify the relationships between processing parameters and diffusion profiles of transient solution droplets (e.g., diffusion width/depth). Optimum processing conditions were identified to mitigate the undesired diffusion of transient solution droplets in the powder bed.

References

References
1.
Nawaz
,
M.
,
Sattar
,
F.
, and
Kundu
,
S. N.
,
2019
,
Minerals and Rock-Forming Processes, Sustainable Energy and Environment: An Earth System Approach
,
Apple Academic Press Inc.
,
Palm Bay, FL
, pp.
39
72
.
2.
Fei
,
F.
,
He
,
L.
,
Zhou
,
B.
,
Xu
,
Z.
, and
Song
,
X.
,
2019
, “
Hydrothermal-Assisted Transient Binder Jetting of Ceramics for Achieving High Green Density
,”
JOM
,
72
(
3
), pp.
1
7
.
3.
Guo
,
J.
,
Guo
,
H.
,
Baker
,
A. L.
,
Lanagan
,
M. T.
,
Kupp
,
E. R.
,
Messing
,
G. L.
, and
Randall
,
C. A.
,
2016
, “
Cold Sintering: A Paradigm Shift for Processing and Integration of Ceramics
,”
Angew. Chem., Int. Ed.
,
55
(
38
), pp.
11457
11461
. 10.1002/anie.201605443
4.
Guo
,
H.
,
Bayer
,
T. J.
,
Guo
,
J.
,
Baker
,
A.
, and
Randall
,
C. A.
,
2017
, “
Current Progress and Perspectives of Applying Cold Sintering Process to ZrO2-Based Ceramics
,”
Scr. Mater.
,
136
, pp.
141
148
. 10.1016/j.scriptamat.2017.02.004
5.
Guo
,
H.
,
Guo
,
J.
,
Baker
,
A.
, and
Randall
,
C. A.
,
2017
, “
Cold Sintering Process for ZrO2-Based Ceramics: Significantly Enhanced Densification Evolution in Yttria-Doped ZrO2
,”
J. Am. Ceram. Soc.
,
100
(
2
), pp.
491
495
. 10.1111/jace.14593
6.
Guo
,
H.
,
Baker
,
A.
,
Guo
,
J.
, and
Randall
,
C. A.
,
2016
, “
Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process
,”
ACS Nano
,
10
(
11
), pp.
10606
10614
. 10.1021/acsnano.6b03800
7.
Guo
,
H.
,
Guo
,
J.
,
Baker
,
A.
, and
Randall
,
C. A.
,
2016
, “
Hydrothermal-Assisted Cold Sintering Process: A New Guidance for Low-Temperature Ceramic Sintering
,”
ACS Appl. Mater. Interfaces
,
8
(
32
), pp.
20909
20915
. 10.1021/acsami.6b07481
8.
Guo
,
H.
,
Baker
,
A.
,
Guo
,
J.
, and
Randall
,
C. A.
,
2016
, “
Cold Sintering Process: A Novel Technique for Low-Temperature Ceramic Processing of Ferroelectrics
,”
J. Am. Ceram. Soc.
,
99
(
11
), pp.
3489
3507
. 10.1111/jace.14554
9.
Manogharan
,
G.
,
Kioko
,
M.
, and
Linkous
,
C.
,
2015
, “
Binder Jetting: A Novel Solid Oxide Fuel-Cell Fabrication Process and Evaluation
,”
JOM
,
67
(
3
), pp.
660
667
. 10.1007/s11837-015-1296-9
10.
Shahzad
,
K.
,
Deckers
,
J.
,
Zhang
,
Z.
,
Kruth
,
J.-P.
, and
Vleugels
,
J.
,
2014
, “
Additive Manufacturing of Zirconia Parts by Indirect Selective Laser Sintering
,”
J. Eur. Ceram. Soc.
,
34
(
1
), pp.
81
89
. 10.1016/j.jeurceramsoc.2013.07.023
11.
Subramanian
,
K.
,
Vail
,
N.
,
Barlow
,
J.
, and
Marcus
,
H.
,
1995
, “
Selective Laser Sintering of Alumina With Polymer Binders
,”
Rapid Prototyp. J.
,
1
(
2
), pp.
24
35
.
12.
He
,
L.
,
Fei
,
F.
,
Wang
,
W.
, and
Song
,
X.
,
2019
, “
Support-Free Ceramic Stereolithography of Complex Overhanging Structures Based on an Elasto-Viscoplastic Suspensio
,”
ACS Appl. Mater. Inter.
,
11
(
20
), pp.
18849
18857
.
13.
He
,
L.
, and
Song
,
X.
,
2018
, “
Supportability of a High-Yield-Stress Slurry in a New Stereolithography-Based Ceramic Fabrication Process
,”
JOM
,
70
(
3
), pp.
407
412
. 10.1007/s11837-017-2657-3
14.
Griffith
,
M. L.
, and
Halloran
,
J. W.
,
1996
, “
Freeform Fabrication of Ceramics via Stereolithography
,”
J. Am. Ceram. Soc.
,
79
(
10
), pp.
2601
2608
. 10.1111/j.1151-2916.1996.tb09022.x
15.
Moon
,
J.
,
Grau
,
J. E.
,
Knezevic
,
V.
,
Cima
,
M. J.
, and
Sachs
,
E. M.
,
2002
, “
Ink-Jet Printing of Binders for Ceramic Components
,”
J. Am. Ceram. Soc.
,
85
(
4
), pp.
755
762
. 10.1111/j.1151-2916.2002.tb00168.x
16.
Gonzalez
,
J.
,
Mireles
,
J.
,
Lin
,
Y.
, and
Wicker
,
R. B.
,
2016
, “
Characterization of Ceramic Components Fabricated Using Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
42
(
9
), pp.
10559
10564
. 10.1016/j.ceramint.2016.03.079
17.
Do
,
T.
,
Kwon
,
P.
, and
Shin
,
C. S.
,
2017
, “
Process Development Toward Full-Density Stainless Steel Parts With Binder Jetting Printing
,”
Int. J. Mach. Tools Manuf.
,
121
, pp.
50
60
. 10.1016/j.ijmachtools.2017.04.006
18.
Polozov
,
I.
,
Sufiiarov
,
V.
, and
Shamshurin
,
A.
,
2019
, “
Synthesis of Titanium Orthorhombic Alloy Using Binder Jetting Additive Manufacturing
,”
Mater. Lett.
,
243
, pp.
88
91
. 10.1016/j.matlet.2019.02.027
19.
Gaytan
,
S.
,
Cadena
,
M.
,
Karim
,
H.
,
Delfin
,
D.
,
Lin
,
Y.
,
Espalin
,
D.
,
MacDonald
,
E.
, and
Wicker
,
R.
,
2015
, “
Fabrication of Barium Titanate by Binder Jetting Additive Manufacturing Technology
,”
Ceram. Int.
,
41
(
5
), pp.
6610
6619
. 10.1016/j.ceramint.2015.01.108
20.
Kamaraj
,
A.
,
Lewis
,
S.
, and
Sundaram
,
M.
,
2016
, “
Numerical Study of Localized Electrochemical Deposition for Micro Electrochemical Additive Manufacturing
,”
Procedia CIRP
,
42
, pp.
788
792
. 10.1016/j.procir.2016.02.320
21.
Liu
,
Z.
,
Zhang
,
D.
,
Sing
,
S.
,
Chua
,
C.
, and
Loh
,
L.
,
2014
, “
Interfacial Characterization of SLM Parts in Multi-Material Processing: Metallurgical Diffusion Between 316L Stainless Steel and C18400 Copper Alloy
,”
Mater. Charact.
,
94
, pp.
116
125
. 10.1016/j.matchar.2014.05.001
22.
Kähäri
,
H.
,
Ramachandran
,
P.
,
Juuti
,
J.
, and
Jantunen
,
H.
,
2017
, “
Room-Temperature-Densified Li2MoO4 Ceramic Patch Antenna and the Effect of Humidity
,”
Int. J. Appl. Ceram. Technol.
,
14
(
1
), pp.
50
55
. 10.1111/ijac.12615
23.
AAA Molybdenum Products
,
2019
, “
Lithium Molybdate
,” https://www.aaamolybdenum.com/mo/lithium-molybdate/,
Accessed May 18, 2020
.
24.
Hosseini
,
S.
,
2015
, “
Droplet Impact and Penetration onto Structured Pore Network Geometries
,” Doctoral dissertation, University of Toronto.
25.
Tan
,
H.
,
2016
, “
Three-Dimensional Simulation of Micrometer-Sized Droplet Impact and Penetration Into the Powder bed
,”
Chem. Eng. Sci.
,
153
, pp.
93
107
. 10.1016/j.ces.2016.07.015
26.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
. 10.1016/0021-9991(92)90240-Y
27.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
. 10.1016/0021-9991(81)90145-5
28.
Lozano
,
G. A.
,
von Colbe
,
J. M. B.
,
Bormann
,
R.
,
Klassen
,
T.
, and
Dornheim
,
M.
,
2011
, “
Enhanced Volumetric Hydrogen Density in Sodium Alanate by Compaction
,”
J. Power Sources
,
196
(
22
), pp.
9254
9259
. 10.1016/j.jpowsour.2011.07.053
29.
Wu
,
C.-Y.
,
Ruddy
,
O.
,
Bentham
,
A.
,
Hancock
,
B.
,
Best
,
S.
, and
Elliott
,
J.
,
2005
, “
Modelling the Mechanical Behaviour of Pharmaceutical Powders During Compaction
,”
Powder Technol.
,
152
(
1–3
), pp.
107
117
. 10.1016/j.powtec.2005.01.010
You do not currently have access to this content.