Abstract

The rapid evolution of electronic and information technology has increased the performance of the electronic processors significantly. Achieving the optimal performance in a smart electronic device poses a serious challenge as the heat generated during operation will reduce the performance of the device which makes thermal management a determinant factor. Powder injection molding (PIM) is an appropriate and relatively new technology used for mass production of small delicate parts with complex shapes and desired properties. One of the latest advances in the PIM process is the production of metal matrix nanocomposites with huge industrial applications, particularly in electronics manufacturing. Manufacturing of efficient complex-shaped nanocomposites, as thermal management components (passive heatsink), could be achieved through the PIM process. On the other hand, what could pose a challenge is the presence of nanoparticles affecting on the different stages of PIM process including feedstock preparation, molding, debinding, and sintering. In this paper, the effect of nanoparticles on different stages of PIM for the production of heatsinks is investigated. Then, the manufacturing of Cu-, Al-, and Mg-based nanocomposites by powder injection molding, as heatsinks, is reviewed followed by investigating the related advantages and limitations.

References

References
1.
Rajabi
,
J.
,
Muhamad
,
N.
, and
Sulong
,
A. B.
,
2012
, “
Effect of Nano-sized Powders on Powder Injection Molding: A Review
,”
Microsyst. Technol.
,
18
(
12
), pp.
1941
1946
. 10.1007/s00542-012-1631-9
2.
Weber
,
D. N.
,
Shaw
,
C. F.
, and
Petering
,
D. H.
,
1987
, “
Euglena Gracilis Cadmium-Binding Protein-II Contains Sulfide Ion
,”
J. Biol. Chem.
,
262
(
15
), pp.
6962
6964
.
3.
Alshammari
,
B. A.
,
Saba
,
N.
,
Alotaibi
,
M. D.
,
Alotibi
,
M. F.
,
Jawaid
,
M.
, and
Alothman
,
O. Y.
,
2019
, “
Evaluation of Mechanical, Physical, and Morphological Properties of Epoxy Composites Reinforced With Different Date Palm Fillers
,”
Materials
,
12
(
13
), p.
2145
. 10.3390/ma12132145
4.
Hancox
,
N. L.
,
1996
, “
Engineering Mechanics of Composite Materials
,”
Mater. Des.
,
2
(
17
), p.
114
. 10.1016/S0261-3069(97)87195-6
5.
Kumar
,
A.
,
Lal
,
S.
, and
Kumar
,
S.
,
2013
, “
Fabrication and Characterization of A359/Al2O3 Metal Matrix Composite Using Electromagnetic Stir Casting Method
,”
J. Mater. Res. Technol.
,
2
(
3
), pp.
250
254
. 10.1016/j.jmrt.2013.03.015
6.
Rosso
,
M.
,
2006
, “
Ceramic and Metal Matrix Composites: Routes and Properties
,”
J. Mater. Process. Technol.
,
175
(
1–3
), pp.
364
375
. 10.1016/j.jmatprotec.2005.04.038
7.
Casati
,
R.
, and
Vedani
,
M.
,
2014
, “
Metal Matrix Composites Reinforced by Nano-particles—A Review
,”
Metals
,
4
(
1
), pp.
65
83
. 10.3390/met4010065
8.
Rozhbiany
,
F. A. R.
, and
Jalal
,
S. R.
,
2019
, “
Influence of Reinforcement and Processing on Aluminum Matrix Composites Modified by Stir Casting Route
,”
Adv. Compos. Lett.
,
28
(
1
), pp.
1
8
.
9.
Rozhbiany
,
F. A. R.
, and
Jalal
,
S. R.
,
2020
, “
The Effectiveness of Reinforcement and Processing on Mechanical Properties, Wear Behavior and Damping Response of Aluminum Matrix Composites
,”
High Temp. Mater. Process
,
38
(
2019
), pp.
927
939
. 10.1515/htmp-2019-0039
10.
Jawaid
,
M.
,
Thariq
,
M.
, and
Saba
,
N.
,
2018
,
Failure Analysis in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites
,
Woodhead Publishing
,
Cambridge
.
11.
Camargo
,
P. H. C.
,
Satyanarayana
,
K. G.
, and
Wypych
,
F.
,
2009
, “
Nanocomposites: Synthesis, Structure, Properties and New Application Opportunities
,”
Mater. Res.
,
12
(
1
), pp.
1
39
. 10.1590/S1516-14392009000100002
12.
Rathod
,
V. T.
,
Kumar
,
J. S.
, and
Jain
,
A.
,
2017
, “
Polymer and Ceramic Nanocomposites for Aerospace Applications
,”
Appl. Nanosci.
,
7
(
8
), pp.
519
548
. 10.1007/s13204-017-0592-9
13.
Imbaby
,
M. F.
, and
Jiang
,
K.
,
2009
, “
Fabrication of Free Standing 316-L Stainless Steel-Al2O3 Composite Micro Machine Parts by Soft Moulding
,”
Acta Mater.
,
57
(
16
), pp.
4751
4757
. 10.1016/j.actamat.2009.06.034
14.
Mazloum
,
A.
,
Kováčik
,
J.
,
Emmer
,
Š
, and
Sevostianov
,
I.
,
2016
, “
Copper–Graphite Composites: Thermal Expansion, Thermal and Electrical Conductivities, and Cross-Property Connections
,”
J. Mater. Sci.
,
51
(
17
), pp.
7977
7990
. 10.1007/s10853-016-0067-5
15.
Yemisci
,
I.
,
Mutlu
,
O.
,
Gulsoy
,
N.
,
Kunal
,
K.
,
Atre
,
S.
, and
Gulsoy
,
H. O.
,
2019
, “
Experimentation and Analysis of Powder Injection Molded Ti10Nb10Zr Alloy: A Promising Candidate for Electrochemical and Biomedical Application
,”
J. Mater. Res. Technol.
,
8
(
6
), pp.
5233
5245
. 10.1016/j.jmrt.2019.08.046
16.
Oh
,
J. W.
,
Gal
,
C. W.
,
Shin
,
D.
,
Park
,
J. M.
,
Yang
,
W. S.
, and
Park
,
S. J.
,
2018
, “
Powder Injection Molding Process in Industrial Fields
,”
J. Japan Soc. Powder Powder Metallurgy
,
65
(
9
), pp.
539
547
. 10.2497/jjspm.65.539
17.
Qin
,
M.
,
Lu
,
H.
,
Wu
,
H.
,
He
,
Q.
,
Liu
,
C.
,
Mu
,
X.
,
Wang
,
Y.
,
Jia
,
B.
, and
Qu
,
X.
,
2019
, “
Powder Injection Molding of Complex-Shaped Aluminium Nitride Ceramic With High Thermal Conductivity
,”
J. Eur. Ceram. Soc.
,
39
(
4
), pp.
952
956
. 10.1016/j.jeurceramsoc.2018.11.037
18.
Verzola
,
R.
,
2006
, “
Technology Issues and the New ICTs
,”
LEONARDO
,
39
(
4
), pp.
311
313
. 10.1162/leon.2006.39.4.311
19.
Biron
,
M.
,
2012
,
Thermoplastics and Thermoplastic Composites
,
William Andrew
,
Norwich
.
20.
Johnson
,
J. L.
,
2019
,
Handbook of Metal Injection Molding
,
Woodhead Publishing
,
Cambridge
, pp.
461
498
.
21.
Raza
,
M. R.
,
Ahmad
,
F.
,
Muhamad
,
N.
,
Sulong
,
A. B.
,
Omar
,
M. A.
,
Akhtar
,
M. N.
,
Nazir
,
M. S.
,
Muhsan
,
A. S.
, and
Aslam
,
M.
,
2014
, “
Effects of Residual Carbon on Microstructure and Surface Roughness of PIM 316L Stainless Steel
,”
International Civil and Infrastructure Engineering Conference (InCIEC 2014)
,
Sabah, Malaysia
,
September
, pp.
927
935
.
22.
Cho
,
H.
,
Park
,
J. M.
,
Rho
,
J.
, and
Park
,
S. J.
,
2019
, “
Warpage of Powder Injection Molded Copper Structure
,”
Metals Mater. Int.
, pp.
1
7
.
23.
Rabilah
,
R.
,
Wahab
,
N. A.
,
Omar
,
M. A.
,
Jaafar
,
T. R.
,
Budin
,
S.
,
Hashim
,
S. M.
,
Sauti
,
R.
, and
Razak
,
M. A.
,
2017
, “
Physical and Mechanical Properties of Injection Moulded 316L Stainless Steel Using Waste Rubber Binder
,”
AIP Conference Proceedings
,
1901
(
1
), p.
130022
. 10.1063/1.5010582
24.
Lu
,
H.
,
Qin
,
M.
,
Wu
,
H.
,
He
,
Q.
,
Liu
,
C.
,
Mu
,
X.
,
Wang
,
Y.
,
Jia
,
B.
, and
Qu
,
X.
,
2019
, “
Effect of AlN Powders on the Debinding and Sintering Behavior, and Thermal Conductivity of Injection Molded AlN Ceramics
,”
Ceram. Int.
,
45
(
18
), pp.
23890
23894
. 10.1016/j.ceramint.2019.08.183
25.
Ni
,
J.
,
Yu
,
M.
, and
Han
,
K.
,
2018
, “
Debinding and Sintering of an Injection-Moulded Hypereutectic Al–Si Alloy
,”
Materials
,
11
(
5
), p.
807
. 10.3390/ma11050807
26.
Zhao
,
M.
,
Qiao
,
L.
,
Zheng
,
J.
,
Ying
,
Y.
,
Yu
,
J.
,
Li
,
W.
, and
Che
,
S.
,
2019
, “
Investigation of the Solvent Debinding in the Injection Molding of ZrO2 Ceramics Using LDEP, HDPE and Wax Binders
,”
Ceram. Int.
,
45
(
3
), pp.
3894
3901
. 10.1016/j.ceramint.2018.11.062
27.
Kadiman
,
N. N.
,
Rashid
,
M. O. A.
,
Muhamad
,
N.
, and
Sulong
,
A. B.
,
2018
, “
Effects of Sintering Temperature on the Physical and Mechanical Properties of Injection-Molded Copper/Graphene Composite
,”
J. Adv. Manuf. Technol.
,
12
(
1
), pp.
49
60
.
28.
Romero
,
A.
, and
Herranz
,
G.
,
2017
, “
Development of Feedstocks Based on Steel Matrix Composites for Metal Injection Moulding
,”
Powder Technol.
,
308
(
2
), pp.
472
478
. 10.1016/j.powtec.2016.12.055
29.
Demers
,
V.
,
Turenne
,
S.
, and
Scalzo
,
O.
,
2015
, “
Segregation Measurement of Powder Injection Molding Feedstock Using Thermogravimetric Analysis, Pycnometer Density and Differential Scanning Calorimetry Techniques
,”
Adv. Powder Technol.
,
26
(
3
), pp.
997
1004
. 10.1016/j.apt.2015.04.005
30.
Wang
,
Y.
,
Qu
,
X.
,
Zhang
,
W.
, and
Li
,
Y.
,
2011
, “
Analysis of Powder Segregation in Powder Injection Molding
,”
Adv. Mater. Res
,
217
(
3
), pp.
1372
1379
. www.scientific.net/AMR.217-218.1372
31.
Demers
,
V.
,
Fareh
,
F.
,
Turenne
,
S.
,
Demarquette
,
N. R.
, and
Scalzo
,
O.
,
2018
, “
Experimental Study on Moldability and Segregation of Inconel 718 Feedstocks Used in Low-Pressure Powder Injection Molding
,”
Adv. Powder Technol.
,
29
(
1
), pp.
180
190
. 10.1016/j.apt.2017.10.025
32.
Enneti
,
R. K.
,
Onbattuvelli
,
V. P.
,
Gulsoy
,
O.
,
Kate
,
K. H.
, and
Atre
,
S. V.
,
2019
,
Handbook of Metal Injection Molding
,
Woodhead Publishing
,
Cambridge
, pp.
57
88
.
33.
Banerjee
,
S.
, and
Joens
,
C. J.
,
2019
,
Handbook of Metal Injection Molding
,
Woodhead Publishing
,
Cambridge
, pp.
129
171
.
34.
Askari
,
A.
,
Alaei
,
M. H.
,
Omrani
,
A. M.
,
Nekouee
,
K.
, and
Park
,
S. J.
,
2019
, “
Rheological and Thermal Characterization of AISI 4605 low-Alloy Steel Feedstock for Metal Injection Molding Process
,”
Metals Mater. Int.
, pp.
1
10
. 10.1007/s12540-019-00442-9
35.
Wen
,
J.
,
Liu
,
W.
,
Xie
,
Z.
,
Lou
,
C.
, and
Yang
,
X.
,
2018
, “
Effects of the Binder Compositions on the Homogeneity of Ceramic Injection Molded Compacts
,”
Ceram. Int.
,
44
(
3
), pp.
3218
3225
. 10.1016/j.ceramint.2017.11.093
36.
Lin
,
D.
,
Sanetrnik
,
D.
,
Cho
,
H.
,
Chung
,
S. T.
,
Kwon
,
Y. S.
,
Kate
,
K. H.
,
Hausnerova
,
B.
,
Atre
,
S. V.
, and
Park
,
S. J.
,
2017
, “
Rheological and Thermal Debinding Properties of Blended Elemental Ti-6Al-4V Powder Injection Molding Feedstock
,”
Powder Technol.
,
311
(
4
), pp.
357
363
. 10.1016/j.powtec.2016.12.071
37.
Fareh
,
F.
,
Demers
,
V.
,
Turenne
,
S.
, and
Scalzo
,
O.
,
2016
, “
Segregation Measurement of Inconel 718 Feedstocks Used in Low-Pressure Metal Injection Molding
,”
Mater. Sci. Forum
,
857
, pp.
286
290
. 10.4028/www.scientific.net/MSF.857.286
38.
Chainer
,
T. J.
,
Schultz
,
M. D.
,
Parida
,
P. R.
, and
Gaynes
,
M. A.
,
2017
, “
Improving Data Center Energy Efficiency With Advanced Thermal Management
,”
IEEE Transactions Components, Packaging Manuf. Technol.
,
7
(
8
), pp.
1228
1239
. 10.1109/TCPMT.2017.2661700
39.
Abbasi
,
A.
,
Firouzi
,
B.
, and
Sendur
,
P.
,
2019
, “
On the Application of Harris Hawks Optimization (HHO) Algorithm to the Design of Microchannel Heat Sinks
,”
Eng. Comput.
, pp.
1
20
. 10.1007/s00366-019-00892-0
40.
Muhsan
,
A. S.
, and
Ahmad
,
F.
,
2011
, “
Development of Nanocomposites Heat Sink (MWCNTs/Cu) Using Powder Injection Moulding for Electronic Applications
,”
National Postgraduate Conference
,
Kuala Lumpur, Malaysia
,
Sept. 19–20
, pp.
1
6
.
41.
McGlen
,
R. J.
,
Jachuck
,
R.
, and
Lin
,
S.
,
2004
, “
Integrated Thermal Management Techniques for High Power Electronic Devices
,”
Appl. Therm. Eng.
,
24
(
8-9
), pp.
1143
1156
. 10.1016/j.applthermaleng.2003.12.029
42.
Ahmed
,
H. E.
,
Salman
,
B. H.
,
Kherbeet
,
A. S.
, and
Ahmed
,
M. I.
,
2018
, “
Optimization of Thermal Design of Heat Sinks : A Review
,”
Int. J. Heat Mass Transf.
,
118
(
3
), pp.
129
153
. 10.1016/j.ijheatmasstransfer.2017.10.099
43.
Kumar
,
A.
,
Kumar
,
R.
, and
Behura
,
A. K.
,
2017
, “
A Review of Electro Thermal Cooling Systems With Heat Sink
,”
Int. J. Eng. Res. Manag. (IJERM)
,
4
(
8
), pp.
19
23
.
44.
Shang
,
B.
,
Ma
,
Y.
,
Hu
,
R.
,
Yuan
,
C.
,
Hu
,
J.
, and
Luo
,
X.
,
2017
, “
Passive Thermal Management System for Downhole Electronics in Harsh Thermal Environments
,”
Appl. Therm. Eng.
,
118
(
5
), pp.
593
599
. 10.1016/j.applthermaleng.2017.01.118
45.
Wu
,
Y.
,
Lai
,
L.
,
Wang
,
Y.
,
Yang
,
Z.
,
Wang
,
H.
, and
Ding
,
G.
,
2019
, “
Micro Heat Sink Structure With High Thermal Conductive Composite via Micromachining Process
,”
Proceedings of 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (Transducers & Eurosensors XXXIII)
,
Berlin, Germany
,
June 23–27
, pp.
1776
1779
.
46.
Mjallal
,
I.
,
Farhat
,
H.
,
Hammoud
,
M.
,
Ali
,
S.
,
Shaer
,
A. A.
, and
Assi
,
A.
,
2018
, “
Cooling Performance of Heat Sinks Used in Electronic Devices
,”
The First International Conference on Energy, Power, Petroleum and Petrochemical Engineering (E3PE 2017)
,
Beirut, Lebanon
,
April 2017
, Vol.
171
, p.
02003
.
47.
Ryu
,
B. D.
,
Han
,
M.
,
Ko
,
K. B.
,
Lee
,
K. H.
,
Cuong
,
T. V.
,
Han
,
N.
,
Kim
,
K.
,
Ryu
,
J. H.
,
Park
,
N. J.
,
Lim
,
Y.
, and
Jo
,
C. H.
,
2019
, “
Reduced Thermal Resistance of Heat Sink Using Graphene Oxide Decorated With Copper Nanoparticles
,”
Mater. Res. Bull.
,
110
(
2
), pp.
76
81
. 10.1016/j.materresbull.2018.06.028
48.
Johnson
,
J. L.
,
Tan
,
L. K.
,
Bollina
,
R.
,
Suri
,
P.
, and
German
,
R. M.
,
2005
, “
Evaluation of Copper Powders for Processing Heat Sinks by Metal Injection Moulding
,”
Powder Metall.
,
48
(
2
), pp.
123
128
. 10.1179/003258905X37792
49.
Mohammadi
,
F.
, and
Li
,
S. S.
,
2018
, “
Copper Like Thermal Conductivity and Silicon Like Coefficient of Thermal Expansion Copper Graphene for High Power IGBT by Metal Injection Molding
,”
Mater. Trans.
,
59
(
11
), pp.
1677
1683
. 10.2320/matertrans.M2018136
50.
Mohammadi
,
F.
,
Arab
,
N.
, and
Li
,
S. S.
,
2018
, “
Metal Injected Copper Carbon Nanotube Composite Material With High Thermal Conductivity and Low CTE for IGBT Power Modules
,”
Mater. Trans.
,
59
(
8
), pp.
1251
1258
. 10.2320/matertrans.M2018006
51.
Muhsan
,
A. S.
,
Ahmad
,
F.
,
Mohamed
,
N. M.
,
Yusoff
,
P. S. M. M. B.
, and
Raza
,
M. R.
,
2014
, “
Effect of CNTs Dispersion on the Thermal and Mechanical Properties of Cu/CNTs Nanocomposites
,”
AIP Conference Proceedings, American Institute of Physics
,
1621
(
1
), pp.
643
649
. 10.1063/1.4898536
52.
Muhsan
,
A. S.
,
Ahmad
,
F.
,
Mohamed
,
N. M.
, and
Raza
,
M. R.
,
2011
, “
Flow Behavior of Cu/CNTs Feedstocks for Powder Injection Molding
,”
Int. J. Appl. Phys. Math.
,
1
(
3
), pp.
199
202
. 10.7763/IJAPM.2011.V1.39
53.
Naseer
,
A.
,
Ahmad
,
F.
,
Muhsan
,
A. S.
, and
Aslam
,
M.
,
2019
, “
Investigation of Suitable Graphene Reinforcements for Copper Based PIM Feedstock
,”
Mater. Today Proc.
,
16
(
Part 4
), pp.
2052
2059
. 10.1016/j.matpr.2019.06.091
54.
Abdoos
,
H.
,
Khorsand
,
H.
, and
Yousefi
,
A. A.
,
2017
, “
Nano-particles in Powder Injection Molding of an Aluminum Matrix Composite: Rheological Behavior, Production and Properties
,”
Int. J. Mater. Res.
,
108
(
3
), pp.
237
244
. 10.3139/146.111468
55.
Abdoos
,
H.
,
Khorsand
,
H.
, and
Yousefi
,
A. A.
,
2016
, “
On the Study of Mechanical Properties of Aluminum / Nano- Alumina Composites Produced via Powder Injection Molding
,”
Mech. Adv. Compos. Struct.
,
3
(
1
), pp.
45
51
.
56.
Rodríguez-Arbaizar
,
M.
,
Hamdan
,
H.
,
Leparoux
,
M.
,
Kollo
,
L.
,
Kwon
,
H.
, and
Carreño-Morelli
,
E.
,
2010
, “
Net-Shape Al6061/SiC Nanocomposites by Powder Injection Moulding
,”
PM2010 WorldCongress
,
Florence, Italy
,
Oct. 10–14
.
57.
Ghanbari
,
A.
,
Alizadeh
,
M.
,
Ghasemi
,
E.
,
Rad
,
R. Y.
, and
Ghaffari
,
S.
,
2015
, “
Preparation of Optimal Feedstock for Low-Pressure Injection Molding of Al/SiC Nanocomposite
,”
Sci. Eng. Compos. Mater
,
22
(
5
), pp.
549
554
. 10.1515/secm-2013-0209
58.
Dhore
,
V. G.
,
Rathod
,
W. S.
, and
Patil
,
K. N.
,
2018
, “
Investigation of Mechanical Properties of Carbon Nanotubes Reinforced Aluminium Composite by Metal Injection Molding
,”
Mater. Today Proc.
,
5
(
9
), pp.
20690
20698
. 10.1016/j.matpr.2018.06.452
59.
Taheri
,
S. M.
,
Ghasemi
,
E.
,
Alizadeh
,
M.
, and
Rad
,
R. Y.
,
2014
, “
Rheological Properties of Mg Based Feedstocks With Micro or Nano Al2O3 Powder for Injection Molding
,”
J. Ceram. Process. Res.
,
15
(
4
), pp.
236
241
.
60.
Kim
,
K. H.
,
Youn
,
H. C.
,
Choi
,
C. J.
, and
Lee
,
B. T.
,
2007
, “
Fabrication and Material Properties of Powder Injection Molded Fe Sintered Bodies Using Nano Fe Powder
,”
Mater. Lett.
,
61
(
4-5
), pp.
1218
1222
. 10.1016/j.matlet.2006.07.002
61.
Yu
,
P. C.
,
Li
,
Q. F.
,
Fuh
,
J. Y. H.
,
Li
,
T.
, and
Ho
,
P. W.
,
2009
, “
Micro Injection Molding of Micro Gear Using Nano-sized Zirconia Powder
,”
Microsyst. Technol.
,
15
(
3
), pp.
401
406
. 10.1007/s00542-008-0673-5
62.
Son
,
S. J.
,
Cho
,
Y. S.
, and
Choi
,
C. J.
,
2011
, “
Advanced Micromanufacturing for High-Precision Micro Bearing by Nanopowder Metallurgy and LIGA Processing
,”
Rev. Adv. Mater. Sci.
,
28
(
7
), pp.
190
195
.
63.
Hassan
,
S. F.
, and
Gupta
,
M.
,
2006
, “
Effect of Particulate Size of Al2O3 Reinforcement on Microstructure and Mechanical Behavior of Solidification Processed Elemental Mg
,”
J. Alloys Compd.
,
419
(
1-2
), pp.
84
90
. 10.1016/j.jallcom.2005.10.005
64.
Kim
,
K. H.
,
Lee
,
B. T.
, and
Choi
,
C. J.
,
2010
, “
Fabrication and Evaluation of Powder Injection Molded Fe-Ni Sintered Bodies Using Nano Fe-50%Ni Powder
,”
J. Alloys Compd.
,
491
(
1–2
), pp.
391
394
. 10.1016/j.jallcom.2009.10.192
65.
Oh
,
J. W.
,
Bollina
,
R.
,
Lee
,
W. S.
, and
Park
,
S. J.
,
2016
, “
Effect of Nanopowder Ratio in Bimodal Powder Mixture on Powder Injection Molding
,”
Powder Technol.
,
302
(
11
), pp.
168
176
. 10.1016/j.powtec.2016.08.051
66.
Choi
,
J.
,
Park
,
J.
,
Song
,
J.
,
Lee
,
W.
, and
Lee
,
J.
,
2017
, “
Design of Trimodal Fe Micro-Nanopowder Feedstock for Micro Powder Injection Molding
,”
Powder Technol.
,
317
(
7
), pp.
1
5
. 10.1016/j.powtec.2017.04.051
67.
Onbattuvelli
,
V. P.
,
Enneti
,
R. K.
,
Park
,
S. J.
, and
Atre
,
S. V.
,
2013
, “
The Effects of Nanoparticle Addition on SiC and AlN Powder-Polymer Mixtures: Packing and Flow Behavior
,”
Int. J. Refractory Metals Hard Mater.
,
36
(
1
), pp.
183
190
. 10.1016/j.ijrmhm.2012.08.014
68.
Kim
,
Y.
,
Lee
,
S.
,
Noh
,
J. W.
,
Lee
,
S. H.
,
Jeong
,
I. D.
, and
Park
,
S. J.
,
2013
, “
Rheological and Sintering Behaviors of Nanostructured Molybdenum Powder
,”
Int. J. Refractory Metals Hard Mater.
,
41
(
11
), pp.
442
448
. 10.1016/j.ijrmhm.2013.06.001
69.
Olhero
,
S. M.
, and
Ferreira
,
J. M. F.
,
2004
, “
Influence of Particle Size Distribution on Rheology and Particle Packing of Silica-Based Suspensions
,”
Powder Technol.
,
139
(
1
), pp.
69
75
. 10.1016/j.powtec.2003.10.004
70.
Attia
,
U. M.
, and
Alcock
,
J. R.
,
2011
, “
A Review of Micro-powder Injection Moulding as a Microfabrication Technique
,”
J. Micromech. Microeng.
,
21
(
4
), p.
043001
. 10.1088/0960-1317/21/4/043001
71.
Han
,
J. S.
,
Gal
,
C. W.
,
Park
,
J. M.
, and
Park
,
S. J.
,
2017
, “
Powder Injection Molding of PNN-PMN-PZN Doped Low Temperature Sintering PZT Ceramics
,”
J. Manuf. Process
,
28
(
Part 1
), pp.
235
242
. 10.1016/j.jmapro.2017.06.008
72.
Rajabi
,
J.
,
Muhamad
,
N.
,
Sulong
,
A. B.
,
Fayyaz
,
A.
, and
Wahi
,
A.
,
2012
, “
Advantages and Limitations of Using Nano Sized Powders for Powder Injection Molding Process: A Review
,”
J. Teknol. Sci. Eng.
,
59
(
2
), pp.
137
140
.
73.
Hansen
,
M.
, and
Anderko
,
K.
,
1958
,
Metallurgy and Metallurgical Engineering Series
,
Mc Graw-Hil Book Company
,
New York
.
74.
Qian
,
C.
,
Gheitaghy
,
A. M.
,
Fan
,
J.
,
Tang
,
H.
,
Sun
,
B.
,
Ye
,
H.
, and
Zhang
,
G.
,
2018
, “
Thermal Management on IGBT Power Electronic Devices and Modules
,”
IEEE Access
,
6
(
3
), pp.
12868
12884
. 10.1109/ACCESS.2018.2793300
75.
Chainer
,
T. J.
,
Member
,
S.
,
Schultz
,
M. D.
,
Parida
,
P. R.
, and
Michael
,
A.
,
2017
, “
Improving Data Center Energy Efficiency With Advanced Thermal Management
,”
IEEE Transactions Components, Packaging Manuf. Technol.
,
7
(
8
), pp.
1228
1239
. 10.1109/TCPMT.2017.2661700
76.
Xu
,
T.
,
Li
,
Y.
,
Chen
,
J.
,
Wu
,
H.
,
Zhou
,
X.
, and
Zhang
,
Z.
,
2018
, “
Improving Thermal Management of Electronic Apparatus With Paraffin (PA)/Expanded Graphite (EG)/Graphene (GN) Composite Material
,”
Appl. Therm. Eng.
,
140
(
7
), pp.
13
22
. 10.1016/j.applthermaleng.2018.05.060
77.
Sevinchan
,
E.
,
Dincer
,
I.
, and
Lang
,
H.
,
2018
, “
A Review on Thermal Management Methods for Robots
,”
Appl. Therm. Eng.
,
140
(
7
), pp.
799
813
. 10.1016/j.applthermaleng.2018.04.132
78.
Sørensen
,
N. J.
,
Suresh
,
S.
,
Tvergaard
,
V.
, and
Needleman
,
A.
,
1995
, “
Effects of Reinforcement Orientation on the Tensile Response of Metal-Matrix Composites
,”
Mater. Sci. Eng. A
,
197
(
1
), pp.
1
10
. 10.1016/0921-5093(94)09739-9
79.
Li
,
M.
, and
Akoshima
,
M.
,
2020
, “
Appropriate Metallic Coating for Thermal Diffusivity Measurement of Nonopaque Materials With Laser Flash Method and Its Effect
,”
Int. J. Heat Mass Transfer
,
148
(
2
), p.
119017
. 10.1016/j.ijheatmasstransfer.2019.119017
80.
Raether
,
F.
,
Baber
,
J.
, and
Friedrich
,
H.
,
2019
, “
Thermal Management of Heating Processes–Measuring Heat Transfer Properties
,”
Refract. Worldforum
,
11
(
2
), pp.
59
65
.
81.
Oddone
,
V.
,
Boerner
,
B.
, and
Reich
,
S.
,
2017
, “
Composites of Aluminum Alloy and Magnesium Alloy With Graphite Showing Low Thermal Expansion and High Specific Thermal Conductivity
,”
Sci. Technol. Adv. Mater.
,
18
(
1
), pp.
180
186
. 10.1080/14686996.2017.1286222
82.
Shirazi
,
I.
,
Ahmad
,
F.
,
Raza
,
M. R.
,
Muhsan
,
A. S.
, and
Aslam
,
M.
,
2015
, “
Shear Controlled Alignment of Short Carbon Fibers in Copper Matrix Composite Green Samples Produced by Powder Injection Molding
,”
AIP Conf. Proc.
,
1669
(
1
), p.
020043
. 10.1063/1.4919181
83.
Tan
,
L. K.
, and
Ma
,
J.
,
2004
, “
Performance of Powder Injection Molding (PIM) Heat Sink
,”
The Ninth Intersociety Conference on Thermal and Thermomechanical Phenomena In Electronic Systems (IEEE Cat. No. 04CH37543)
,
Las Vegas, NV
,
June 1–4
, Vol.
1
, pp.
451
454
.
84.
Shirazi
,
M. I.
,
Ahmad
,
F.
,
Raza
,
M. R.
,
Muhsan
,
A. S.
,
Omer
,
M. A.
, and
Aslam
,
M.
,
2014
, “
Orientation of Carbon Fibers in Copper Matrix Produced by Powder Injection Molding
,”
The 4th International Conference on Production, Energy and Reliability (ICPER2014)
,
Kuala Lumpur, Malaysia
,
June 2014
, p.
04027
.
85.
Ahmad
,
F.
,
2005
, “
Orientation of Short Fibers in Powder Injection Molded Aluminum Matrix Composites
,”
J. Mater. Process. Technol.
,
169
(
2
), pp.
263
269
. 10.1016/j.jmatprotec.2005.03.036
86.
Zhang
,
T.
,
Evans
,
J. R. G.
, and
Bevis
,
M. J.
,
1996
, “
The Control of Fibre Orientation in Ceramic and Metal Composites by Open-Ended Injection Moulding
,”
Compos. Sci. Technol.
,
56
(
8
), pp.
921
928
. 10.1016/0266-3538(96)00055-3
87.
Waschitschek
,
K.
,
Kech
,
A.
, and
Christiansen
,
J. D.
,
2002
, “
Influence of Push–Pull Injection Moulding on Fibres and Matrix of Fibre Reinforced Polypropylene
,”
Composites Part A: Applied Science and Manufacturing
,
33
(
5
), pp.
735
744
. 10.1016/S1359-835X(02)00007-6
88.
Muhsan
,
A. S.
,
Ahmad
,
F.
,
Mohamed
,
N. M.
,
Megat Yusoff
,
P. S. M.
, and
Rafi Raza
,
M.
,
2013
, “
Uniform Dispersion of Multiwalled Carbon Nanotubes in Copper Matrix Nanocomposites Using Metal Injection Molding Technique
,”
Int. J. Manuf. Eng.
,
2013
(
1
), pp.
1
10
. 10.1155/2013/386141
89.
Liang
,
S.
,
Tang
,
Y.
,
Zhang
,
Y.
, and
Zhong
,
J.
,
2009
, “
The Rheologyical Effect of Carbon Nanotubes on the Iron Based Metal Powder Injection Molding Feedstock
,”
Adv. Mater. Res.
,
79
, pp.
469
472
. 10.4028/www.scientific.net/AMR.79-82.469
90.
Awang
,
M.
,
Emamian
,
S. S.
, and
Yusof
,
F.
,
2020
,
Advances in Material Sciences and Engineering
,
Springer
,
New York
.
91.
Daoush
,
W. M.
,
Lim
,
B. K.
,
Mo
,
C. B.
,
Nam
,
D. H.
, and
Hong
,
S. H.
,
2009
, “
Electrical and Mechanical Properties of Carbon Nanotube Reinforced Copper Nanocomposites Fabricated by Electroless Deposition Process
,”
Mater. Sci. Eng. A
,
513
(
7
), pp.
247
253
. 10.1016/j.msea.2009.01.073
92.
Cha
,
S. I.
,
Kim
,
K. T.
,
Arshad
,
S. N.
,
Mo
,
C. B.
, and
Hong
,
S. H.
,
2005
, “
Extraordinary Strengthening Effect of Carbon Nanotubes in Metal-Matrix Nanocomposites Processed by Molecular-Level Mixing
,”
Adv. Mater.
,
17
(
11
), pp.
1377
1381
. 10.1002/adma.200401933
93.
Abdoos
,
H.
,
Khorsand
,
H.
, and
Yousefi
,
A. A.
,
2014
, “
Torque Rheometry and Rheological Analysis of Powder–Polymer Mixture for Aluminum Powder Injection Molding
,”
Iran. Polym. J, English Ed.
,
23
(
10
), pp.
745
755
. 10.1007/s13726-014-0268-1
94.
Khakbiz
,
M.
,
Simchi
,
A.
, and
Bagheri
,
R.
,
2005
, “
Analysis of the Rheological Behavior and Stability of 316L Stainless Steel-TiC Powder Injection Molding Feedstock
,”
Mater. Sci. Eng. A
,
407
(
1-2
), pp.
105
113
. 10.1016/j.msea.2005.06.057
95.
Zhang
,
X. N.
,
Geng
,
L.
, and
Wang
,
G. S.
,
2006
, “
Fabrication of Al-Based Hybrid Composites Reinforced With SiC Whiskers and SiC Nanoparticles by Squeeze Casting
,”
J. Mater. Process. Technol.
,
176
(
1–3
), pp.
146
151
. 10.1016/j.jmatprotec.2006.03.125
96.
Zhao
,
N.
,
Nash
,
P.
, and
Yang
,
X.
,
2005
, “
The Effect of Mechanical Alloying on SiC Distribution and the Properties of 6061 Aluminum Composite
,”
J. Mater. Process. Technol.
,
170
(
3
), pp.
586
592
. 10.1016/j.jmatprotec.2005.06.037
97.
Rajkovic
,
V.
,
Bozic
,
D.
, and
Jovanovic
,
M. T.
,
2008
, “
Properties of Copper Matrix Reinforced With Nano- and Micro-Sized Al2O3 Particles
,”
J. Alloys Compd.
,
459
(
1–2
), pp.
177
184
. 10.1016/j.jallcom.2007.04.307
98.
Rahimian
,
M.
,
Parvin
,
N.
, and
Ehsani
,
N.
,
2010
, “
Investigation of Particle Size and Amount of Alumina on Microstructure and Mechanical Properties of Al Matrix Composite Made by Powder Metallurgy
,”
Mater. Sci. Eng. A
,
527
(
4-5
), pp.
1031
1038
. 10.1016/j.msea.2009.09.034
99.
Tong
,
X. C.
,
2011
,
Advanced Materials for Thermal Management of Electronic Packaging
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
100.
Haghshenas
,
M.
, and
Gupta
,
M.
,
2020
, “
Magnesium Nanocomposites Reinforced With Rare Earth Element Nanoparticles: Nanoindentation-Driven Response
,”
Nanocomposites
,
6
(
1
), pp.
22
30
. 10.1080/20550324.2019.1705592
101.
Xi
,
Y. L.
,
Chai
,
D. L.
,
Zhang
,
W. X.
, and
Zhou
,
J. E.
,
2005
, “
Ti-6Al-4V Particle Reinforced Magnesium Matrix Composite by Powder Metallurgy
,”
Mater. Lett.
,
59
(
14–15
), pp.
1831
1835
. 10.1016/j.matlet.2005.01.075
You do not currently have access to this content.