Abstract

In this paper, we study experimentally the impact of a vibrating wire on the free abrasive machining (FAM) process in removing material from the surface of brittle materials, such as silicon. An experimental setup was designed to study the FAM process on silicon substrate surface by using a slurry-fed wire with a periodic excitation. An analytical solution of a wire moving axially, subject to an oscillating boundary condition with damping from abrasive slurry, was derived based on the partial differential equation of motion. Experiments were conducted on the apparatus using a wire with an oscillating boundary. It was found that the amplitudes of vibration were larger at the side of the oscillatory boundary, which caused more FAM interaction near the edge of the oscillatory boundary with larger material removal that was measured and validated. Furthermore, experiments were conducted to elucidate the effectiveness of brittle material removal using FAM with abrasive grits: (i) under dry condition, (ii) with water, and (iii) with abrasive slurry. Experimental results showed that the vibration of wire resulted in plastic deformation on the surface of silicon wafer. The abrasive grits in slurry driven by a vibrating wire generated material removal through observable grooves and fractures on the surface of silicon due to FAM in just a few minutes. The grooves from FAM process is an outcome of brittle machining through fracture formation and concatenation, generated by the indentation of abrasive grits on the silicon surface.

References

References
1.
Marinescu
,
I. D.
,
Rowe
,
W. B.
,
Dimitrov
,
B.
, and
Ohmori
,
H.
,
2013, Jan
,
Tribology of Abrasive Machining Processes
, 2nd ed.,
William Andrew Publishing
,
Oxford
.
2.
Chauhan
,
R.
,
Ahn
,
Y.
,
Chandrasekar
,
S.
, and
Farris
,
T. N.
,
1993
, “
Role of Indentation Fracture in Free Abrasive Machining of Ceramics
,”
Wear
,
162–164
, pp.
246
257
. 10.1016/0043-1648(93)90507-I
3.
Chen
,
C. C. A.
, and
Chao
,
P. H.
,
2010
, “
Surface Texture Analysis of Fixed and Free Abrasive Machining of Silicon Substrates for Solar Cells
,”
Adv. Mater. Res.
,
126–128
, pp.
177
180
. 10.4028/www.scientific.net/AMR.126-128.177
4.
Huang
,
F.
, and
Mote
Jr.,
C.
,
1995
, “
On the Translating Damping Caused by a Thin Viscous Fluid Layer Between a Translating String and a Translating Rigid Surface
,”
J. Sound Vib.
,
181
(
2
), pp.
251
260
. 10.1006/jsvi.1995.0138
5.
Chen
,
L.-Q.
,
2005
, “
Analysis and Control of Transverse Vibrations of Axially Moving Strings
,”
ASME Appl. Mech. Rev.
,
58
(
2
), pp.
91
116
. 10.1115/1.1849169
6.
Wei
,
S.
, and
Kao
,
I.
,
2000
, “
Vibration Analysis of Wire and Frequency Response in the Modern Wiresaw Manufacturing Process
,”
J. Sound Vib.
,
231
(
5
), pp.
1383
1395
. 10.1006/jsvi.1999.2471
7.
Zhu
,
L.
, and
Kao
,
I.
,
2005
, “
Galerkin-Based Modal Analysis on the Vibration of Wire-Slurry System in Wafer Slicing Using a Wiresaw
,”
J. Sound Vib.
,
283
(
3–5
), pp.
589
620
. 10.1016/j.jsv.2004.04.018
8.
Chung
,
C.
, and
Kao
,
I.
,
2011
, “
Green’s Function and Forced Vibration Response of Damped Axially Moving Wire
,”
J. Vib. Control
,
18
(
12
), pp.
1798
1808
. 10.1177/1077546311428632
9.
Lawn
,
B. R.
, and
Swain
,
M. V.
,
1975
, “
Microfracture Beneath Point Indentations in Brittle Solids
,”
J. Mater. Sci.
,
10
(
1
), pp.
113
122
. 10.1007/BF00541038
10.
Xu Hockin
,
H.
, and
Said
,
J.
,
1995
, “
Effect of Microstructure on Material-Removal Mechanisms and Damage Tolerance in Abrasive Machining of Silicon Carbide
,”
J. Am. Ceram. Soc.
,
78
(
9
), pp.
2443
2448
. 10.1111/j.1151-2916.1995.tb08683.x
11.
Marshall
,
D. B.
,
Evans
,
A. G.
,
Khuri Yakub
,
B. T.
,
Tien
,
J. W.
,
Kino
,
G. S.
, and
Ashby
,
M. F.
,
1983
, “
The Nature of Machining Damage in Brittle Materials
,”
Proc. R. Soc. Lond. A. Math. Phys. Sci.
,
385
(
1789
), pp.
461
475
.
12.
Bhagavat
,
M.
,
Prasad
,
V.
, and
Kao
,
I.
,
1999
, “
Elasto-Hydrodynamic Interaction in the Free Abrasive Wafer Slicing Using a Wiresaw: Modeling and Finite Element Analysis
,”
ASME J. Tribol.
,
122
(
2
), pp.
394
404
. 10.1115/1.555375
13.
Clark
,
W. I.
,
Shih
,
A. J.
,
Lemaster
,
R. L.
, and
McSpadden
,
S. B.
,
2003
, “
Fixed Abrasive Diamond Wire Machining–part II: Experiment Design and Results
,”
Int. J. Mach Tool Manu.
,
43
(
5
), pp.
533
542
. 10.1016/S0890-6955(02)00216-X
14.
Wu
,
H.
,
Yang
,
C.
, and
Melkote
,
S. N.
,
2014
, “
Effect of Reciprocating Wire Slurry Sawing on Surface Quality and Mechanical Strength of As-cut Solar Silicon Wafers
,”
Precis. Eng.
,
38
(
1
), pp.
121
126
. 10.1016/j.precisioneng.2013.08.003
15.
Hardin
,
C. W.
,
Qu
,
J.
, and
Shih
,
A. J.
,
2004
, “
Fixed Abrasive Diamond Wire Saw Slicing of Single-crystal Silicon Carbide Wafers
,”
Mater. Manuf. Processes.
,
19
(
2
), pp.
355
367
. 10.1081/AMP-120029960
16.
Huang
,
H.
,
Zheng
,
S. L.
, and
Xu
,
X. P.
,
2016
, “
Theoretical Research on Contact Length in the Rocking Motion Wire Saw
,”
Adv. Mater. Res.
,
1136
, pp.
343
349
. 10.4028/www.scientific.net/AMR.1136.343
17.
Tanaka
,
H.
,
Shimada
,
S.
, and
Ikawa
,
N.
,
2004
, “
Brittle-Ductile Transition in Monocrystalline Silicon Analysed by Molecular Dynamics Simulation
,”
Proc. Inst. Mech. Engin. Part C: J. Mech. Engin. Sci.
,
218
(
6
), pp.
583
590
. 10.1243/095440604774202213
18.
Chung
,
C.
, and
Kao
,
I.
,
2011
, “
Modeling of Axially Moving Wire With Damping: Eigenfunctions, Orthogonality and Applications in Slurry Wiresaws
,”
J. Sound Vib.
,
330
(
12
), pp.
2947
2963
. 10.1016/j.jsv.2011.01.008
19.
Meyer Burger Technology LTD
,
2017
,
MB Wire Saw DW 288 Series 3 datasheet
,
01
.
20.
Kao
,
I.
, and
Chung
,
C.
,
To be published
,
Wafer Manufacturing and Shaping of Crystalline Wafers
,
Wileys Publisher
,
Toronto
.
You do not currently have access to this content.