Abstract

A systematic modeling of multibody dynamics of five-axis machine tools is presented in this article. The machine is divided into major subassemblies such as spindle, column, bed, tool changer, and longitudinal and rotary drives. The inertias and mass center of each subassembly are calculated from the design model. The subassemblies are connected with elastic springs and damping elements at contact joints to form the complete multibody dynamic model of the machine that considers the rigid body kinematics and structural vibrations of the machine at any point. The unknown elastic joint parameters are estimated from the experimental modal analysis of the machine tool. The resulting position-dependent multibody dynamic model has the minimal number of degrees-of-freedom that is equivalent to the number of measured modes, as opposed to thousands used in finite element models. The frequency response functions of the machine can be predicted at any posture of the five-axis machine, which are compared against the directly measured values to assess the validity of model. The proposed model can predict the combined rigid body motion and vibrations of the machine with computational efficiency, and hence, it can be used as a digital twin to simulate its dynamic performance in machining operations and tracking control tests of the servo drives.

References

References
1.
Altintas
,
Y.
, and
Weck
,
M.
,
2004
, “
Chatter Stability in Metal Cutting and Grinding
,”
Ann. CIRP
,
53
(
2
), pp.
619
642
. 10.1016/S0007-8506(07)60032-8
2.
Altintas
,
Y.
,
Brecher
,
C.
,
Weck
,
M.
, and
Witt
,
S.
,
2005
, “
Virtual Machine Tool
,”
CIRP. Ann.
,
54
(
2
), pp.
115
138
. 10.1016/S0007-8506(07)60022-5
3.
Abdul-Kadir
,
A.
,
Xu
,
X.
, and
Hämmerle
,
E.
,
2011
, “
Virtual Machine Tools and Virtual Machining—A Technological Review
,”
Rob. Comput.-Int. Manufact.
,
27
(
3
), pp.
494
508
. 10.1016/j.rcim.2010.10.003
4.
Li
,
D.
,
Cao
,
H.
,
Zhang
,
X.
,
Chen
,
X.
, and
Yan
,
R.
,
2019
, “
Model Predictive Control Based Active Chatter Control in Milling Process
,”
Mech. Syst. Signal Process.
,
128
, pp.
266
281
. 10.1016/j.ymssp.2019.03.047
5.
Li
,
C.
,
Tseng
,
H.
,
Tsai
,
M.
, and
Cheng
,
C.
,
2019
, “
Novel Servo-Feed-Drive Model Considering Cutting Force and Structural Effects in Milling to Predict Servo Dynamic Behaviors
,”
Int. J. Adv. Manuf. Technol.
,
106
, pp.
1441
1451
. 10.1007/s00170-019-04778-9
6.
Weck
,
M.
, and
Brecher
,
C.
,
2006
,
Werkzeugmaschinen 2: Konstruktion Und Berechnung, Chapter 2: Gestelle Und Gestellbauteile
,
Springer-Verlag
,
Berlin, Heidelberg
, pp.
7
167
.
7.
Zaeh
,
M.
, and
Siedl
,
D.
,
2007
, “
A New Method for Simulation of Machining Performance by Integrating Finite Element and Multi-Body Simulation for Machine Tools
,”
CIRP. Ann.
,
56
(
1
), pp.
383
386
. 10.1016/j.cirp.2007.05.089
8.
Weck
,
M.
,
Queins
,
Q.
, and
Brecher
,
C.
,
2003
, “
Coupled Simulation of Control Loop and Structural Dynamics
,”
Ann. German Acad. Soc. Prod. Eng.
,
10
(
2
), pp.
105
110
.
9.
Law
,
M.
,
Altintas
,
Y.
, and
Phani
,
A.S.
,
2013
, “
Rapid Evaluation and Optimization of Machine Tools With Position-Dependent Stability
,”
Int. J. Mach. Tools Manufact.
,
68
, pp.
81
90
. 10.1016/j.ijmachtools.2013.02.003
10.
Law
,
M.
,
Ihlenfeldt
,
S.
,
Wabner
,
M.
,
Altintas
,
Y.
, and
Neugebauer
,
R.
,
2013
, “
Position-Dependent Dynamics and Stability of Serial-Parallel Kinematic Machines
,”
CIRP. Ann.
,
62
(
1
), pp.
375
378
. 10.1016/j.cirp.2013.03.134
11.
Law
,
M.
, and
Ihlenfeldt
,
S.
,
2015
, “
A Frequency-Based Substructuring Approach to Efficiently Model Position-Dependent Dynamics in Machine Tools
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn.
,
229
(
3
), pp.
304
317
. 10.1177/1464419314562264
12.
Bianchi
,
G.
,
Paolucci
,
F.
,
Van den Braembussche
,
P.
, and
Van Brussel
,
H.
,
1996
, “
Towards Virtual Engineering in Machine Tool Design
,”
CIRP. Ann.
,
45
(
1
), pp.
381
384
. 10.1016/S0007-8506(07)63085-6
13.
Vesely
,
J.
, and
Sulitka
,
M.
,
2009
, “
Machine Tool Virtual Model
,”
Modern Mach. Sci. J.
,
54
(
2
), pp.
146
152
.
14.
Kolar
,
P.
,
Sulitka
,
M.
, and
Janota
,
M.
,
2011
, “
Simulation of Dynamic Properties of a Spindle and Tool System Coupled With a Machine Tool Frame
,”
Int. J. Adv. Manuf. Technol.
,
54
, pp.
11
20
. 10.1007/s00170-010-2917-7
15.
Sato
,
R.
,
Noguchi
,
S.
,
Hokazono
,
T.
,
Nishida
,
I.
, and
Shirase
,
K.
,
2020
, “
Time Domain Coupled Simulation of Machine Tool Dynamics and Cutting Forces Considering the Influences of Nonlinear Friction Characteristics and Process Damping
,”
Precis. Eng.
,
61
, pp.
103
109
. 10.1016/j.precisioneng.2019.10.010
16.
Sato
,
R.
,
Tashiro
,
G.
, and
Shirase
,
K.
,
2015
, “
Analysis of the Coupled Vibration Between Feed Drive Systems and Machine Tool Structure
,”
Int. J. Aut. Technol.
,
9
(
6
), pp.
689
697
. 10.20965/ijat.2015.p0689
17.
Rivière-Lorphèvre
,
E.
,
Huynh
,
H. N.
, and
Verlinden
,
O.
,
2018
, “
Influence of the Time Step Selection on the Dynamic Simulation of Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
95
(
9–12
), pp.
4497
4512
. 10.1007/s00170-017-1570-9
18.
Verlinden
,
O.
,
Ben Fékih
,
L.
, and
Kouroussis
,
G.
,
2013
, “
Symbolic Generation of the Kinematics of Multibody Systems in EasyDyn: From MuPAD to Xcas/Giac
,”
Theor. Appl. Mech. Lett.
,
3
(
1
), p.
013012
. 10.1063/2.13013012
19.
Manufacturing Automation Laboratories, Cutpro, Manufacturing Automation Inc
.,
Vancouver, BC, Canada
, www.malinc.com.
20.
Armendia
,
M.
,
Ghassempouri
,
M.
,
Ozturk
,
E.
, and
Peysson
,
F.
, “
Virtualization of Machine Tools
,”
Twin-Control: A Digital Twin Approach to Improve Machine Tools Lifecycle
,
Springer Nature
,
New York
, pp.
41
55
.
21.
Maia
,
N. M. M.
, and
Silva
,
J. M. M.
,
1997
,
Theoretical and Experimental Modal Analysis
,
John Wiley & Sons
,
Hoboken, NJ
.
22.
Hartenberg
,
R.
, and
Denavit
,
J.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
, pp.
215
221
.
23.
Siciliano
,
B.
,
Sciavicco
,
L.
,
Villani
,
L.
, and
Oriolo
,
G.
,
2010
,
Robotics: Modelling, Planning and Control
,
Springer
,
New York
.
24.
Huynh
,
H. N.
,
Assadi
,
H.
,
Dambly
,
V.
,
Rivière-Lorphèvre
,
E.
, and
Verlinden
,
O.
, “
Direct Method for Updating Flexible Multibody Systems Applied to a Milling Robot
,”
Rob. Comput.-Int. Manufact.
,
68
, p.
102049
. 10.1016/j.rcim.2020.102049
You do not currently have access to this content.