This work examines the fracture behavior of ferritic steel welds in the transition temperature regime, where failure can occur either by ductile tearing or cleavage fracture. A computational and probabilistic-based mechanistic approach to cleavage fracture and ductile crack growth is adopted to model the fracture processes. The softening effect of ductile damage close to the crack tip is described by a Gurson-type material model. A statistical approach linked to both the Weibull stress and the initial void volume fraction is employed to determine the probability of cleavage fracture and the coupling between both fracture mechanisms. Finite element results are relied upon to interpret experimental fracture toughness data for the welds and to examine the effects of near crack tip damage and crack growth on the cleavage failure probabilities and cleavage and ductile fracture toughness distributions. The scatter in the weld experimental fracture toughness data is well reproduced by the proposed cleavage and ductile tearing models.

1.
ABAQUS V. 5.5, 1996, Hibbitt, Karlsson and Sorensen Inc., Providence, RI.
2.
ASTM Standard E 1737-96, 1996, “Standard Test Method for J-Integral Characterisation of Fracture Toughness,” Research Report RR E24-1011 from ASTM Committee on Fatigue and Fracture, USA.
3.
Beremin
F. M.
,
1983
, “
A Local Criterion for Cleavage Fracture of a Nuclear Pressure Vessel Steel
,”
Metall. Trans. A
, Vol.
14
p.
2277
2277
.
4.
Doig, P., and Moskovic, R., 1990, “The Influence of Competing Fracture Modes on Ductile to Brittle Transition Temperature,” Nuclear Electric Report TD/SIP/REP/2034.
5.
Faleskog, J., Gao, X., and Shih, C. F. 1998, “Cell Model for Non-linear Fracture Analysis—I. Micromechanics Calibration,” Int. J. Fract., in press.
6.
Gurson
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME JOURNAL OF ENGINEERING AND MATERIALS TECHNOLOGY
, Vol.
99
p.
2
2
.
7.
Knott, J. F., 1997, “Recent Advances in the Micro-modeling of Cleavage Fracture in Steel,” Proc. G. R. Irwin Symposium on Cleavage Fracture, K. S.Chan, ed., The Minerals, Metals and Mat. Soc, USA, p. 171.
8.
Landes, D., and Shaffer, D. H., 1980, “Statistical Characterisation of Fracture in the Transition Region,” ASTM STP 700, 368.
9.
Lei, Y., O’Dowd, N. P., Busso, E. P., and Webster, G., 1998, “Weibull Stress Solutions for Cracks in Elastic and Elastic-Plastic Materials,” Int. Journal of Fracture, in press.
10.
Lidbury, D. P. G., Sherry, A. H., Beardsmore, D., Howard, I. C., Li, Z. H., and Sheikh, M. A., 1996, “Application of Local Approach to Predict Cleavage and Ductile Fracture,” Proc. of TAGSI Symposium, Advances in Fracture Mechanics, Abington Cambridge, UK, Jan.
11.
McMahon
C. J.
, and
Cohen
M.
,
1965
,
Acta Met.
, Vol.
13
, p.
591
591
.
12.
Minami
F.
,
Bruckner-Foit
A.
,
Munz
D.
, and
Trolidenier
B.
,
1992
, “
Estimation Procedure for the Weibull Parameters Used in the Local Approach
,”
Int. J. Fracture
, Vol.
54
, p.
197
197
.
13.
Moskovic, R., 1997, Magnox Electric plc (UK). Personal communication.
14.
Moskovic
R.
, and
Neale
B. K.
,
1993
, “
Treatment of Fracture Toughness Data in the Transition Regime
,”
Fatigue Fract. Engng. Mater. Struct.
, Vol.
16
, p.
1175
1175
.
15.
Reed
P. A.
, and
Knott
J. P.
,
1992
, “
An investigation of the Warm Pre-stressing Effect in A533B Weld Metals
,”
Fatigue and Fract. Engng. Mat. Struct.
, Vol.
19
, p.
485
485
.
16.
Ritchie
R. O.
,
Knott
J.
, and
Rice
J. R.
,
1973
,
J. Mech. Physics Sol.
, Vol.
21
, p.
395
395
.
17.
Ruggieri, C., and Dodds, R. H., 1995, “Constraint and Ductile Tearing Effects in Statistical Analyses of Cleavage Fracture,” University of Illinois Report UILU-ENG-95-2011, Oct.
18.
Sanderson, D. J., Sherry, A. H., Beardsmore, D. W., Howard, I. C., and Li, Z. H. 1996, “Draft Procedure for the Use of Local Approach to Predict the Cleavage and Ductile Fracture Behaviour of Steels,” Oct.
19.
Tvergaard
V.
,
1990
, “
Material Failure by Void Growth to Coalescence
,”
Advances in Applied Mechanics
, Vol.
27
, p.
83
83
.
20.
Tweed
J. W.
and
Knott
J. F.
,
1987
, “
Micromechanisms of Failure in C-Mn Weld Metals
,”
Acta Metall. Mat.
, Vol.
35
, p.
1401
1401
.
21.
Wallin, K., 1993, “Statistical Aspects of Constraint with Emphasis on Testing and Analysis of Specimens in the Transition Region,” in Constraint Effects in Fracture, ASTM STP1171, Hankett et al eds., p. 264.
22.
Weibull
W.
,
1939
, “
The Phenomenon of Rupture in Solids
,”
Ingeniors Vetenskapes Akademien
, Handlingar, Vol.
153
, p.
55
55
.
23.
Windle
P. L.
, and
Moskovic
R.
,
1989
, “
The Analysis of Mode I In-Plane Toughness Data for Mild Steel Plate and Weld Metal. Part I: Analytic Methodology
,”
Int. J. Pres. Ves. & Piping
, Vol.
40
, p.
41
41
.
24.
Windle
P. L.
, and
Moskovic
R.
,
1989
b, “
The Analysis of Mode I In-Plane Toughness Data for Mild Steel Plate and Weld Metal. Part I: The Data and the Analysis
,”
Int. J. Pres. Ves. & Piping
, Vol.
40
, p.
107
107
.
25.
Xia
L.
, and
Shih
C. F.
,
1995
, “
Ductile Crack Growth I: A Numerical Study Using Computational Cells with Microstructurally-Based Length Scales
,”
J. Mech. Phys. Sol.
, Vol.
43
, p.
233
233
.
26.
Xia
L.
, and
Shih
C. F.
,
1996
, “
Ductile Crack Growth III: Transition to Cleavage Fracture
,”
J. Mech. Phys. Sol.
, Vol.
44
, p.
603
603
.
This content is only available via PDF.
You do not currently have access to this content.