There are significant efforts to develop continuum theories based on atomistic models. These atomistic-based continuum theories are limited to zero temperature (T=0K). We have developed a finite-temperature continuum theory based on interatomic potentials. The effect of finite temperature is accounted for via the local harmonic approximation, which relates the entropy to the vibration frequencies of the system, and the latter are determined from the interatomic potential. The focus of this theory is to establish the continuum constitutive model in terms of the interatomic potential and temperature. We have studied the temperature dependence of specific heat and coefficient of thermal expansion of graphene and diamond, and have found good agreements with the experimental data without any parameter fitting. We have also studied the temperature dependence of Young’s modulus and bifurcation strain of single-wall carbon nanotubes.

1.
Tadmor
,
E. B.
,
Ortiz
,
M.
, and
Philips
,
R.
, 1996, “
Quasicontinuum Analysis of Defects in Solids
,”
Philos. Mag. A
0141-8610
73
, pp.
1529
1563
.
2.
Tadmor
,
E. B.
,
Philips
,
R.
, and
Ortiz
,
M.
, 1996, “
Mixed Atomistic and Continuum Models of Deformation in Solids
,”
Langmuir
0743-7463
12
, pp.
4529
4534
.
3.
Tadmor
,
E. B.
,
Smith
,
G. S.
,
Bernstein
,
N.
, and
Kaxiras
,
E.
, 1999, “
Mixed Finite Element and Atomistic Formulation for Complex Crystals
,”
Phys. Rev. B
0163-1829
59
, pp.
235
245
.
4.
Miller
,
R.
,
Ortiz
,
M.
,
Phillips
,
R.
,
Shenoy
,
V.
, and
Tadmor
,
E. B.
, 1998, “
Quasicontinuum Models of Fracture and Plasticity
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
427
444
.
5.
Miller
,
R.
,
Tadmor
,
E. B.
,
Phillips
,
R.
, and
Ortiz
,
M.
, 1998, “
Quasicontinuum Simulation of Fracture at the Atomic Scale
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
6
, pp.
607
638
.
6.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Phillips
,
R.
, and
Ortiz
,
M.
, 1998, “
Quasicontinuum Models of Interfacial Structure and Deformation
,”
Phys. Rev. Lett.
0031-9007
80
, pp.
742
745
.
7.
Shenoy
,
V. B.
,
Miller
,
R.
,
Tadmor
,
E. B.
,
Rodney
,
D.
,
Phillips
,
R.
, and
Ortiz
,
M.
, 1999, “
An Adaptive Finite Element Approach to Atomic-Scale Mechanics—The Quasicontinuum Method
,”
J. Mech. Phys. Solids
0022-5096
47
, pp.
611
642
.
8.
Shilkrot
,
L. E.
,
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2002, “
A Coupled Atomistic∕Continuum Model of Defects in Solids
,”
J. Mech. Phys. Solids
0022-5096
50
, pp.
2085
2106
.
9.
Curtin
,
W. A.
, and
Miller
,
R. E.
, 2003, “
Atomistic∕Continuum Coupling in Computational Materials Science
,”
Modell. Simul. Mater. Sci. Eng.
0965-0393,
11
, pp.
R33
R68
.
10.
Gao
,
H.
, and
Klein
,
P. A.
, 1998, “
Numerical Simulation of Crack Growth in an Isotropic Solid with Randomized Internal Cohesive Bonds
,”
J. Mech. Phys. Solids
0022-5096
46
, pp.
187
218
.
11.
Klein
,
P. A.
, and
Gao
,
H.
, 1998, “
Crack Nucleation and Growth as Strain Localization in a Virtual-Bond Continuum
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
21
48
.
12.
Klein
,
P. A.
, and
Gao
,
H.
, 2000, “
Study of Crack Dynamics Using the Virtual Internal Bond Method
,”
Multiscale Deformation and Fracture in Materials and Structures, James R. Rice’s 60th Anniversary Volume
,
Kluwer Academic Publishers
, Dordrecht, The Netherlands, pp.
275
309
.
13.
Zhang
,
P.
,
Klein
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Wu
,
P. D.
, 2002, “
Numerical Simulation of Cohesive Fracture by the Virtual-Internal-Bond Model
,”
Comput. Model. Eng. Sci.
1526-1492,
3
pp.
263
277
.
14.
Thiagarajan
,
G.
,
Hsia
,
K. J.
, and
Huang
,
Y.
, 2004, “
Finite Element Implementation of Virtual Intenal Bond Model for Crack Behavior Simulation
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
401
423
.
15.
Thiagarajan
,
G.
,
Huang
,
Y.
, and
Hsia
,
K. J.
, 2004, “
Fracture Simulation Using an Elasto-Viscoplastic Vistual Intenal Bond Model with Finite Elements
,”
J. Appl. Phys.
0021-8979
71
, pp.
796
804
.
16.
Friesecke
,
G.
, and
James
,
R. D.
, 2000, “
A Scheme for the Passage from Atomic to Continuum Theory for Thin Films, Nanotubes and Nanorods
,”
J. Mech. Phys. Solids
0022-5096
48
, pp.
1519
1540
.
17.
Arroyo
,
M.
, and
Belytschko
,
T.
, 2002, “
An Atomistic-Based Finite Deformation Membrane for Single Layer Crystalline Films
,”
J. Mech. Phys. Solids
0022-5096
50
, pp.
1941
1977
.
18.
Zhang
,
P.
,
Huang
,
Y.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2002, “
Fracture Nucleation in Single-Wall Carbon Nanotubes Under Tension: A Continuum Analysis Incorporating Interatomic Potentials
,”
ASME J. Appl. Mech.
0021-8936
69
, pp.
454
458
.
19.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
, and
Hwang
,
K. C.
, 2002, “
On the Continuum Modeling of Carbon Nanotubes
,”
Acta Mech. Sin.
0459-1879
18
, pp.
528
536
.
20.
Zhang
,
P.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Klein
,
P. A.
, and
Hwang
,
K. C.
, 2002, “
The Elastic Modulus of Single-Wall Carbon Nanotubes: A Continuum Analysis Incorporating Interatomic Potentials
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
3893
3906
.
21.
Zhang
,
P.
,
Jiang
,
H.
,
Huang
,
Y.
,
Geubelle
,
P.
, and
Hwang
,
K.
, 2004, “
An Atomistic-Based Continuum Theory for Carbon Nanotubes: Analysis of Fracture Nucleation
,”
J. Mech. Phys. Solids
0022-5096
52
, pp.
977
998
.
22.
Jiang
,
H.
,
Zhang
,
P.
,
Liu
,
B.
,
Huang
,
Y.
,
Geubelle
,
P. H.
,
Gao
,
H.
, and
Hwang
,
K. C.
, 2003, “
The Effect of Nanotube Radius on the Constitutive Model for Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256,
28
, pp.
429
442
.
23.
Shenoy
,
V.
,
Shenoy
,
V.
, and
Phillips
,
R.
, 1999, “
Finite Temperature Quasicontinuum Methods
,”
Mater. Res. Soc. Symp. Proc.
0272-9172
538
, pp.
465
471
.
24.
Weiner
,
J. H.
,
Statistical Mechanics of Elasticity
(
Wiley
, New York, 1983).
25.
Brenner
,
D. W.
, 1990, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
0163-1829
42
, pp.
9458
9471
.
26.
Brenner
,
D. W.
,
Shenderova
,
O. A.
,
Harrison
,
J. A.
,
Stuart
,
S. J.
,
Ni
,
B.
, and
Sinnott
,
S. B.
, 2002, “
A Second-Generation Reactive Empirical Bond Order (Rebo) Potential Energy Expression for Hydrocarbons
,”
J. Phys.: Condens. Matter
0953-8984
14
, pp.
783
802
.
27.
Foiles
,
S. M.
, 1994, “
Evaluation of Harmonic Methods for Calculating the Free Energy of Defects in Solids
,”
Phys. Rev. B
0163-1829
49
, pp.
14930
14938
.
28.
Chandler
,
D.
,
Introduction to Modern Statistical Mechanics
(
Oxford University Press
, Oxford, 1987).
29.
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
, 1995, “
Evaluation of the Accuracy of the Free-Energy-Inimization Method
,”
Phys. Rev. B
0163-1829
52
, pp.
9229
9241
.
30.
LeSar
,
R.
,
Najafabadi
,
R.
, and
Srolovitz
,
D. J.
, 1989, “
Finite-Temperature Defect Properties from Free-Energy Minimization
,”
Phys. Rev. Lett.
0031-9007
63
, pp.
624
627
.
31.
Born
,
M.
, and
Huang
,
K.
, 1954, “
Dynamical Theory of the Crystal Lattices
,”
Oxford University Press
, Oxford.
32.
Milstein
,
F.
, 1980, “
Review: Theoretical Elastic Behaviour at Large Strains
,”
J. Mater. Sci.
0022-2461,
15
, pp.
1071
1084
.
33.
Ashcroft
,
N. W.
, and
Mermin
,
N.
, 1976,
Solid State Physics
,”
Saunders College
, Philadelphia.
34.
Ashcroft
,
N. W.
, and
Mermin
,
N.
, 1981,
Solid State Physics
,
Holt-Saunders, Japan
, Tokyo.
35.
Physics of Group IV Elements and III-V Compounds
, 1982, edited by
Madelung
Landolt-Börnstein
,
New Series, Group III
, Vol.
17
,
Springer-Verlag
, Berlin.
36.
Billings
,
B. H.
, and
Gray
,
D. E.
, 1972,
American Institute of Physics Handbook
,
McGraw-Hill
, New York.
37.
Jiang
,
H.
,
Liu
,
B.
,
Huang
,
Y.
, and
Hwang
,
K. C.
, 2004, “
Thermal Expansion of Single Wall Carbon Nanotubes
,”
ASME J. Eng. Mater. Technol.
0094-4289,
126
, pp.
265
270
.
38.
Raravikar
,
N. R.
,
Keblinski
,
P.
,
Rao
,
A. M.
,
Dresselhaus
,
M. S.
,
Schadler
,
L. S.
, and
Ajayan
,
P. M.
, 2002, “
Temperature Dependence of Radial Breathing Mode Raman Frequency of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829
66
, p.
235424
.
39.
Tersoff
,
J.
, 1988, “
Empirical Interatomic Potential for Carbon, with Applications to Amorphous Carbon
,”
Phys. Rev. Lett.
0031-9007
61
, pp.
2879
2882
.
40.
Yakobson
,
B. I.
,
Campbell
,
M. P.
,
Brabec
,
C. J.
, and
Bernholc
,
J.
, 1997, “
High Strain Rate Fracture and C-chain Unraveling in Carbon Nanotubes
,”
Comput. Mater. Sci.
0927-0256
8
, pp.
341
348
.
41.
Ogata
,
S.
, and
Shibutani
,
Y.
, 2003, “
Ideal Tensile Strength and Band Gap of Single-Walled Carbon Nanotubes
,”
Phys. Rev. B
0163-1829
68
, p.
165409
.
42.
Mielke
,
S.
,
Troya
,
D.
,
Zhang
,
S.
,
Li
,
J. L.
,
Xiao
,
S.
,
Car
,
R.
,
Ruoff
,
R. S.
,
Schatz
,
G. C.
, and
Belytschko
,
T.
, 2004, “
The Role of Vacancy Defects and Holes in the Fracture of Carbon Nanotubes
,”
Chem. Phys. Lett.
0009-2614
390
, pp.
413
420
.
43.
Saito
,
R.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
, 1998,
Physical Properties of Carbon Nanotubes
,
Imperial College Press
, London.
44.
Liu
,
B.
,
Huang
,
Y.
,
Jiang
,
H.
,
Qu
,
S.
, and
Hwang
,
K. C.
, 2004, “
The Atomic-Scale Finite Element Method
,”
Comput. Methods Appl. Mech. Eng.
0045-7825
193
, pp.
1849
1864
.
45.
Liu
,
B.
,
Jiang
,
H.
,
Huang
,
Y.
,
Qu
,
S.
,
Yu
,
M. F.
, and
Hwang
,
K. C.
, “
Atomic-Scale Finite Element Method in Multiscale Computation with Applications to Carbon Nanotubes
,”
Phys. Rev. B
0163-1829 (to be published).
You do not currently have access to this content.