In order to better understand and predict the intragrain heterogeneous deformation in a 6063 aluminum alloy deformed at an elevated temperature, when additional slip systems beyond the usual octahedral slip systems are active, a modeling framework for analyzing representative polycrystals under these conditions is presented. A model polycrystal that has a similar microstructure to that observed in the material under consideration is modeled with a finite element analysis. A large number of elements per grain (more than 1000) are used to capture well the intragranular heterogeneous response. The polycrystal model is analyzed with three different sets of initial orientations. A compression test is used to calibrate the material model, and a macroscale simulation of the compression test is used to define the deformation history applied to the model polycrystal. In order to reduce boundary condition effects, periodic boundary conditions are applied to the model polycrystal. To investigate the effect of additional slip systems expected to be active at elevated temperatures, the results considering only the 12 {111}⟨110⟩ slip systems are compared to the results with the additional 12 {110}⟨110⟩ and {001}⟨110⟩ slip systems available (i.e., 24 available slip systems). The resulting predicted grain structure and texture are compared to the experimentally observed grain structure and texture in the 6063 aluminum alloy compression sample as well as to the available data in the literature, and the intragranular misorientations are studied.

1.
Olaf
,
E.
, and
Hirsch
,
J.
, 2002, “
Texture Control by Thermomechanical Processing of AA6xxx Al–Mg–Si Sheet Alloys for Automotive Applications—A Review
,”
Mater. Sci. Eng., A
0921-5093,
A336
, pp.
249
262
.
2.
Bay
,
B.
,
Hansen
,
N.
,
Hughes
,
D. A.
, and
Kuhlmann-Wilsdorf
,
D.
, 1992, “
Overview No. 96: Evolution of F.C.C. Deformation Structures in Polyslip
,”
Acta Metall. Mater.
0956-7151,
40
, pp.
205
219
.
3.
Taylor
,
G. I.
, 1938, “
Plastic Strains in Metals
,”
J. Inst. Met.
0020-2975,
62
(
1
), pp.
307
324
.
4.
Fleischer
,
R. L.
, 1987, “
Number of Active Slip Systems in Polycrystalline Brass: Implications for Ductility in Other Structures
,”
Acta Metall.
0001-6160,
35
, pp.
2129
2136
.
5.
Peirce
,
D.
,
Asaro
,
R. J.
, and
Needleman
,
A.
, 1983, “
Material Rate Dependence and Localized Deformation in Crystalline Solids
,”
Acta Metall.
0001-6160,
31
, pp.
1951
1976
.
6.
Hughes
,
D. A.
,
Liu
,
Q.
,
Chrzan
,
D. C.
, and
Hansen
,
N.
, 1997, “
Scaling of Microstructural Parameters: Misorientations of Deformation Induced Boundaries
,”
Acta Mater.
1359-6454,
45
, pp.
105
112
.
7.
Hughes
,
D. A.
, and
Hansen
,
N.
, 1997, “
High Angle Boundaries Formed by Grain Subdivision Mechanisms
,”
Acta Mater.
1359-6454,
45
, pp.
3871
3886
.
8.
Hughes
,
D. A.
,
Chrzan
,
D. C.
,
Liu
,
Q.
, and
Hansen
,
N.
, 1998, “
Scaling of Misorientation Angle Distributions
,”
Phys. Rev. Lett.
0031-9007,
81
, pp.
4664
4667
.
9.
Perocheau
,
F.
, and
Driver
,
J. H.
, 2002, “
Slip System Rheology of Al-1%Mn Crystals Deformed by Hot Plane Strain Compression
,”
Int. J. Plast.
0749-6419,
18
, pp.
185
202
.
10.
Kvapilová
,
M.
, and
Orlová
,
A.
, 2002, “
Traces of Non-Compact Glide in the Dislocation Structure of Copper after Creep at High Temperature
,”
Mater. Sci. Eng., A
0921-5093,
A328
, pp.
277
282
.
11.
Martin
,
J.-L.
, and
Caillard
,
D.
, 1993, “
The Importance of Non-Compact Slip in Some Close Packed Metallic Structures
,”
Z. Metallkd.
0044-3093,
84
(
12
), pp.
867
873
.
12.
Maurice
,
C.
, and
Driver
,
J. H.
, 1997, “
Hot Rolling Textures of F.C.C. Metals—Part I. Experimental Results on Al Single and Polycrystals
,”
Acta Mater.
1359-6454,
45
(
11
), pp.
4627
4638
.
13.
Ringeval
,
S.
,
Piot
,
D.
,
Desrayaud
,
C.
, and
Driver
,
J. H.
, 2006, “
Texture and Microstructure Development in an Al–3Mg–Sc(Zr) Alloy Deformed by Triaxial Forging
,”
Acta Mater.
1359-6454,
54
, pp.
3095
3105
.
14.
Stout
,
M. G.
,
Chen
,
S. R.
,
Kocks
,
U. F.
,
Schwartz
,
A. J.
,
MacEwen
,
S. R.
, and
Beaudoin
,
A. J.
, 1998, “
Mechanisms Responsible for Texture Development in a 5182 Aluminum Alloy Deformed at Elevated Temperatures
,”
Hot Deformation of Aluminum Alloys II
,
Proceedings of TMS Symposium, Minerals, Metals & Materials Society
,
Warrendale, PA
, pp.
243
254
.
15.
Maurice
,
C.
, and
Driver
,
J. H.
, 1997, “
Hot Rolling Textures of F.C.C. Metals—Part II. Numerical Simulations
,”
Acta Mater.
1359-6454,
45
(
11
), pp.
4639
4649
.
16.
Molinari
,
A.
,
Canova
,
G. R.
, and
Ahzi
,
A.
, 1987, “
A Self Consistent Approach of the Large Deformation Polycrystal Viscoplasticity
,”
Acta Metall.
0001-6160,
35
, pp.
2983
2994
.
17.
Beaudoin
,
A. J.
,
Acharya
,
A.
,
Chen
,
S. R.
,
Korzekwa
,
D. A.
, and
Stout
,
M. G.
, 2000, “
Consideration of Grain-Size Effect and Kinetics in the Plastic Deformation of Metal Polycrystals
,”
Acta Mater.
1359-6454,
48
, pp.
3409
3423
.
18.
Dawson
,
P. R.
,
Mika
,
D.
, and
Barton
,
N.
, 2002, “
Finite Element Modeling of Lattice Misorientations in Aluminum Polycrystals
,”
Scr. Mater.
1359-6462,
47
, pp.
713
717
.
19.
Sarma
,
G. B.
,
Radhakrishnan
,
B.
, and
Zacharia
,
T.
, 1998, “
Finite Element Simulations of Cold Deformation at the Mesoscale
,”
Comput. Mater. Sci.
0927-0256,
12
, pp.
105
122
.
20.
Buchheit
,
T. E.
,
Wellman
,
G. W.
, and
Battaile
,
C. C.
, 2005, “
Investigation the Limits of Polycrystal Plasticity Modeling
,”
Int. J. Plast.
0749-6419,
21
(
2
), pp.
221
249
.
21.
Van Geertruyden
,
W. H.
,
Claves
,
S. R.
, and
Misiolek
,
W. Z.
, 2002, “
Electron Backscatter Diffraction Analysis of Microstructural Evolution in Hot Deformed 6xxx Series Aluminum Alloys
,”
Metall. Mater. Trans. A
1073-5623,
33A
, pp.
693
700
.
22.
Maniatty
,
A. M.
,
Dawson
,
P. R.
, and
Lee
,
Y.-S.
, 1992, “
A Time Integration Algorithm for Elasto-Viscoplastic Cubic Crystals Applied to Modeling Polycrystalline Deformation
,”
Int. J. Numer. Methods Eng.
0029-5981,
35
, pp.
1565
1588
.
23.
Lee
,
E. H.
, 1969, “
Elastic-Plastic Deformation at Finite Strain
,”
ASME J. Appl. Mech.
0021-8936,
36
, pp.
1
6
.
24.
Voce
,
E.
, 1948, “
A Practical Strain-Hardening Function
,”
Acta Metall.
0001-6160,
51
, pp.
219
226
.
25.
Kocks
,
U. F.
, 1976, “
Laws for Work-Hardening and Low-Temperature Creep
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
26.
Hill
,
R.
, 1985, “
On the Micro-to-Macro Transition in Constitutive Analyses of Elastoplastic Response at Finite Strain
,”
Math. Proc. Cambridge Philos. Soc.
0305-0041,
98
, pp.
579
590
.
27.
Miehe
,
C.
, 2003, “
Computational Micro-to-Macro Transitions for Discretized Microstructures of Heterogeneous Materials at Finite Strains Based on the Minimization of Averaged Incremental Energy
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
192
, pp.
559
591
.
28.
Lu
,
J.
, 2006, “
Simulating Microstructure Evolution of Realistic 3D Aluminum Alloy Polycrystals during Large Plastic Deformation at Elevated Temperatures
,” Ph.D. thesis, Rensselaer Polytechnic Institute.
29.
Radhakrishnan
,
B.
, and
Zacharia
,
T.
, 1995, “
Simulation of Curvature-Driven Grain Growth by Using a Modified Monte Carlo Algorithm
,”
Metall. Mater. Trans. A
1073-5623,
26
, pp.
167
180
.
30.
Maniatty
,
A. M.
, and
Yu
,
J.-S.
, 1996, “
Effect of Elasticity on Slip System Activity in FCC Crystals: A Numerical Study
,”
Int. J. Solids Struct.
0020-7683,
33
, pp.
1069
1082
.
You do not currently have access to this content.