A fivefold increase in adhesion energy is observed for poly(acrylic acid) (PAA) modified Cu/TaN interfaces in which the thin copper films are deposited by the hydrogen assisted reduction of bis(2,2,7-trimethyloctane-3,5-dionato) copper in supercritical carbon dioxide. The PAA adhesion layer is sacrificial at the reaction conditions used, and X-ray photoelectron spectroscopy has shown that the Cu/TaN interface is free of contamination following deposition. The resulting average interfacial adhesion energy is just above 5J/m2, which meets adhesion requirements for integration in Cu interconnects. The adhesion measurements are performed with a custom built four-point bend fracture mechanics testing system. Comparison of the copper film thickness to the measured adhesion energy indicated that there is no effect on the adhesion energy as the film thickness changes.

1.
Lane
,
M.
,
Dauskardt
,
R. H.
,
Krishna
,
N.
, and
Hashim
,
I.
, 2000, “
Adhesion and Reliability of Copper Interconnects With Ta and TaN Barrier Layers
,”
J. Mater. Res.
0884-2914,
15
, pp.
203
211
.
2.
Min
,
K. H.
,
Chun
,
K. C.
, and
Kim
,
K. B.
, 1996, “
Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization
,”
J. Vac. Sci. Technol. B
1071-1023,
14
, pp.
3263
3269
.
3.
Oku
,
T.
,
Kawakami
,
E.
,
Uekubo
,
M.
,
Takahiro
,
K.
,
Yamaguchi
,
S.
, and
Murakami
,
M.
, 1996, “
Diffusion Barrier Property of TaN Between Si and Cu
,”
Appl. Surf. Sci.
0169-4332,
99
, pp.
265
272
.
4.
Tsai
,
M. H.
,
Sun
,
S. C.
,
Tsai
,
C. E.
,
Chuang
,
S. H.
, and
Chiu
,
H. T.
, 1996, “
Comparison of the Diffusion Barrier Properties of Chemical-Vapor-Deposited TaN and Sputtered TaN Between Cu and Si
,”
J. Appl. Phys.
0021-8979,
79
, pp.
6932
6938
.
5.
Hampden-Smith
,
M. J.
, and
Kodas
,
T. T.
, 1995, “
Chemical Vapor Deposition of Metals: Part 1. An Overview of CVD Processes
,”
Chem. Vap. Deposition
0948-1907,
1
, pp.
8
23
.
6.
Hampden-Smith
,
M. J.
, and
Kodas
,
T. T.
, 1995, “
Chemical Vapor Deposition of Metals: Part 2. Overview of Selective CVD of Metals
,”
Chem. Vap. Deposition
0948-1907,
1
, pp.
39
48
.
7.
Voss
,
S.
,
Gandikota
,
S.
,
Chen
,
L. Y.
,
Tao
,
R.
,
Cong
,
D.
,
Duboust
,
A.
,
Yoshida
,
N.
, and
Ramaswami
,
S.
, 2000, “
Chemical Studies of CVD Cu Deposited on Ta and TaN Barriers Under Various Process Conditions
,”
Microelectron. Eng.
0167-9317,
50
, pp.
501
508
.
8.
Gandikota
,
S.
,
Voss
,
S.
,
Tao
,
R.
,
Duboust
,
A.
,
Cong
,
D.
,
Chen
,
L. Y.
,
Ramaswami
,
S.
, and
Carl
,
D.
, 2000, “
Adhesion Studies of CVD Copper Metallization
,”
Microelectron. Eng.
0167-9317,
50
, pp.
547
553
.
9.
Kim
,
H.
, 2003, “
Atomic Layer Deposition of Metal and Nitride Thin Films: Current Research Efforts and Applications for Semiconductor Device Processing
,”
J. Vac. Sci. Technol. B
1071-1023,
21
, pp.
2231
2261
.
10.
Furuya
,
A.
,
Tagami
,
M.
,
Shiba
,
K.
,
Kikuta
,
K.
, and
Hayashi
,
Y.
, 2002, “
Evaluation of CVD/PVD Multilayered Seed for Electrochemical Deposition of Cu-Damascene Interconnects
,”
IEEE Trans. Electron Devices
0018-9383,
49
, pp.
733
738
.
11.
Park
,
J. S.
,
Lee
,
M. J.
,
Lee
,
C. S.
, and
Kang
,
S. W.
, 2001, “
Plasma-Enhanced Atomic Layer Deposition of Tantalum Nitrides Using Hydrogen Radicals as a Reducing Agent
,”
Electrochem. Solid-State Lett.
1099-0062,
4
, pp.
C17
C19
.
12.
Rossnagel
,
S. M.
,
Sherman
,
A.
, and
Turner
,
F.
, 2000, “
Plasma-Enhanced Atomic Layer Deposition of Ta and Ti for Interconnect Diffusion Barriers
,”
J. Vac. Sci. Technol. B
1071-1023,
18
, pp.
2016
2020
.
13.
Fix
,
R.
,
Gordon
,
R. G.
, and
Hoffman
,
D. M.
, 1993, “
Chemical Vapor Deposition of Vanadium, Niobium, and Tantalum Nitride Thin Films
,”
Chem. Mater.
0897-4756,
5
, pp.
614
619
.
14.
Blackburn
,
J. M.
,
Long
,
D. P.
,
Cabañas
,
A.
, and
Watkins
,
J. J.
, 2001, “
Deposition of Conformal Copper and Nickel Films From Supercritical Carbon Dioxide
,”
Science
0036-8075,
294
, pp.
141
145
.
15.
Cabañas
,
A.
,
Long
,
D. P.
, and
Watkins
,
J. J.
, 2004, “
Deposition of Gold Films and Nanostructures From Supercritical Carbon Dioxide
,”
Chem. Mater.
0897-4756,
16
, pp.
2028
2033
.
16.
O’Neil
,
A.
, and
Watkins
,
J. J.
, 2006, “
Reactive Deposition of Conformal Ruthenium Films From Supercritical Carbon Dioxide
,”
Chem. Mater.
0897-4756,
18
, pp.
5652
5658
.
17.
O'Neil
,
A.
, and
Watkins
,
J. J.
, 2007, “
Reactive Deposition of Conformal Metal Oxide Films From Supercritical Carbon Dioxide
,”
Chem. Mater.
0897-4756,
19
, pp.
5460
5466
.
18.
Aschenbrenner
,
O.
,
Kemper
,
S.
,
Dahmen
,
N.
,
Schaber
,
K.
, and
Dinjus
,
E.
, 2007, “
Solubility of β-Diketonates, Cyclopentadienyls, and Cyclooctadiene Complexes With Various Metals in Supercritical Carbon Dioxide
,”
J. Supercrit. Fluids
0896-8446,
41
, pp.
179
186
.
19.
Lagalante
,
A. F.
,
Hansen
,
B. N.
,
Bruno
,
T. J.
, and
Sievers
,
R. E.
, 1995, “
Solubilities of Copper(II) and Chromium(III) β-Diketonates in Supercritical Carbon Dioxide
,”
Inorg. Chem.
0020-1669,
34
, pp.
5781
5785
.
20.
Smart
,
N. G.
,
Carleson
,
T.
,
Kast
,
T.
,
Clifford
,
A. A.
,
Burford
,
M. D.
, and
Wai
,
C. M.
, 1997, “
Solubility of Chelating Agents and Metal-Containing Compounds in Supercritical Fluid Carbon Dioxide
,”
Talanta
0039-9140,
44
, pp.
137
150
.
21.
Ganesan
,
P. G.
,
Gamba
,
J.
,
Ellis
,
A.
,
Kane
,
R. S.
, and
Ramanath
,
G.
, 2003, “
Polyelectrolyte Nanolayers as Diffusion Barriers for Cu Metallization
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
3302
3304
.
22.
Krishnamoorthy
,
A.
,
Chanda
,
K.
,
Murarka
,
S. P.
,
Ramanath
,
G.
, and
Ryan
,
J. G.
, 2001, “
Self-Assembled Near-Zero-Thickness Molecular Layers as Diffusion Barriers for Cu Metallization
,”
Appl. Phys. Lett.
0003-6951,
78
, pp.
2467
2469
.
23.
Ramanath
,
G.
,
Cui
,
G.
,
Ganesan
,
P. G.
,
Guo
,
X.
,
Ellis
,
A. V.
,
Stukowski
,
M.
,
Vijayamohanan
,
K.
,
Doppelt
,
P.
, and
Lane
,
M.
, 2003, “
Self-Assembled Subnanolayers as Interfacial Adhesion Enhances and Diffusion Barriers for Integrated Circuits
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
383
385
.
24.
Tong
,
J.
,
Martini
,
D.
,
Magtoto
,
N.
,
Pritchett
,
M.
, and
Kelber
,
J.
, 2002, “
Interaction of Polymeric Si:C:H Films With Copper Substrates and With Deposited Cu Adatoms
,”
Appl. Surf. Sci.
0169-4332,
187
, pp.
253
260
.
25.
Chen
,
L.
, and
Kelber
,
J. A.
, 1999, “
Polymerized C-Si Films on Metal Substrates: Cu Adhesion/Diffusion Barriers for Ultralarge Scale Integration?
,”
J. Vac. Sci. Technol. A
0734-2101,
17
, pp.
1968
1973
.
26.
Ferguson
,
G. S.
,
Chaudhury
,
M. K.
,
Sigal
,
G. B.
, and
Whitesides
,
G. M.
, 1991, “
Contact Adhesion of Thin Gold Films on Elastomeric Supports: Cold Welding Under Ambient Conditios
,”
Science
0036-8075,
253
, pp.
776
778
.
27.
Gandhi
,
D. D.
,
Lane
,
M.
,
Zhou
,
Y.
,
Singh
,
A. P.
,
Nayak
,
S.
,
Tisch
,
U.
,
Eizenberg
,
M.
, and
Ramanath
,
G.
, 2007, “
Annealing-Induced Interfacial Toughening Using a Molecular Nanolayer
,”
Nature (London)
0028-0836,
447
, pp.
299
303
.
28.
Yi
,
S. M.
,
Jang
,
K. H.
,
An
,
J. U.
,
Hwang
,
S. S.
, and
Joo
,
Y. C.
, 2008, “
The Self-Formatting Barrier Characteristics of Cu—Mg/SiO2 and Cu—Ru/SiO2 Films for Cu Interconnects
,”
Microelectron. Reliab.
0026-2714,
48
, pp.
744
748
.
29.
Woo
,
T. G.
,
Park
,
I. S.
,
Lee
,
H. W.
,
Lee
,
M. H.
,
Park
,
E. K.
,
Hwang
,
Y. K.
, and
Seol
,
K. W.
, 2007, “
The Effect of Seed Metal on the Surface Morphology of Copper Foil and Adhesion Property
,”
Journal of the Korean Institute of Metals and Materials
,
45
(
7
), pp.
423
428
.
30.
Yi
,
S. M.
,
An
,
J. U.
,
Hwang
,
S. S.
,
Yim
,
J. R.
,
Huh
,
Y. H.
,
Park
,
Y. B.
, and
Joo
,
Y. C.
, 2008, “
Electrical Reliability and Interfacial Adhesion of Cu(Mg) Thin Films for Interconnect Process Adaptability
,”
Thin Solid Films
0040-6090,
516
, pp.
2325
2330
.
31.
de Felipe
,
T. S.
,
Murarka
,
S. P.
,
Bedell
,
S.
, and
Lanford
,
W. A.
, 1998, “
Capacitance-Voltage, Current-Voltage, and Thermal Stability of Copper Alloyed With Aluminum or Magnesium
,”
Thin Solid Films
0040-6090,
335
, pp.
49
53
.
32.
Lanford
,
W. A.
,
Ding
,
P. J.
,
Wang
,
W.
,
Hymes
,
S.
, and
Murarka
,
S. P.
, 1995, “
Alloying of Copper for use in Microelectronic Metallization
,”
Mater. Chem. Phys.
0254-0584,
41
, pp.
192
198
.
33.
Toomey
,
J. J.
,
Hymes
,
S.
, and
Murarka
,
S. P.
, 1995, “
Stress Effects in Thermal Cycling of Copper (Magnesium) Thin Films
,”
Appl. Phys. Lett.
0003-6951,
66
, pp.
2074
2076
.
34.
Ding
,
P. J.
,
Lanford
,
W. A.
,
Hymes
,
S.
, and
Murarka
,
S. P.
, 1994, “
Effects of the Addition of Small Amounts of Al to Copper: Corrosion, Resistivity, Adhesion, Morphology, and Diffusion
,”
J. Appl. Phys.
0021-8979,
75
, pp.
3627
3631
.
35.
Ding
,
P. J.
,
Lanford
,
W. A.
,
Hymes
,
S.
, and
Murarka
,
S. P.
, 1994, “
Oxidation Resistant High Conductivity Copper Films
,”
Appl. Phys. Lett.
0003-6951,
64
, pp.
2897
2899
.
36.
Zong
,
Y.
,
Shan
,
X.
, and
Watkins
,
J. J.
, 2004, “
Sacrificial Adhesion Promotion Layers for Copper Metallization of Device Structures
,”
Langmuir
0743-7463,
20
, pp.
9210
9216
.
37.
ASTM Standard D3359-08
, 2003, “
Standard Test Methods for Measuring Adhesion by Tape Test
,” ASTM International, West Conshohocken, PA, www.astm.orgwww.astm.org.
38.
Chalker
,
P. R.
,
Bull
,
S. J.
, and
Rickerby
,
D. S.
, 1991, “
A Review of the Methods for the Evaluation of Coating-Substrate Adhesion
,”
Mater. Sci. Eng., A
0921-5093,
140
, pp.
583
592
.
39.
Mittal
,
K. L.
, 1976, “
Adhesion Measurement of Thin-Films
,”
Electrocomponent Sci. Technol.
0305-3091,
3
, pp.
21
42
.
40.
Pulker
,
H. K.
,
Perry
,
A. J.
, and
Berger
,
R.
1981, “
Adhesion
,”
Surf. Technol.
0376-4583,
14
, pp.
25
39
.
41.
Sekler
,
J.
,
Steinmann
,
P. A.
, and
Hintermann
,
H. E.
, 1988, “
The Scratch Test: Different Critical Load Determination Techniques
,”
Surf. Coat. Technol.
0257-8972,
36
, pp.
519
529
.
42.
Steinmann
,
P. A.
, and
Hintermann
,
H. E.
, 1988, “
Thin-Film Adhesion – A Review of the Mechanical Methods for Adhesion Assessment
,”
J. Electrochem. Soc.
0013-4651,
135
, pp.
C358
C358
.
43.
Steinmann
,
P. A.
, and
Hintermann
,
H. E.
, 1989, “
A Review of the Mechanical Tests for Assessment of Thin-Film Adhesion
,”
J. Vac. Sci. Technol. A
0734-2101,
7
, pp.
2267
2272
.
44.
Steinmann
,
P. A.
,
Tardy
,
Y.
, and
Hintermann
,
H. E.
, 1987, “
Adhesion Testing by the Scratch Test Method: The Influence of Intrinsic and Extrinsic Parameters on the Critical Load
,”
Thin Solid Films
0040-6090,
154
, pp.
333
349
.
45.
Gerberich
,
W. W.
,
Kramer
,
D. E.
,
Tymiak
,
N. I.
,
Volinsky
,
A. A.
,
Bahr
,
D. F.
, and
Kriese
,
M. D.
, 1999, “
Nanoindentation-Induced Defect—Interface Interactions: Phenomena, Methods and Limitations
,”
Acta Mater.
1359-6454,
47
, pp.
4115
4123
.
46.
Kim
,
J. J.
,
Jeong
,
J. H.
,
Lee
,
K. R.
, and
Kwon
,
D.
, 2003, “
A New Indentation Cracking Method for Evaluating Interfacial Adhesion Energy of Hard Films
,”
Thin Solid Films
0040-6090,
441
, pp.
172
179
.
47.
Kitamura
,
T.
,
Hirakata
,
H.
, and
Itsuji
,
T.
, 2003, “
Effect of Residual Stress on Delamination From Interface Edge Between Nano-Films
,”
Eng. Fract. Mech.
0013-7944,
70
, pp.
2089
2101
.
48.
Kriese
,
M. D.
,
Gerberich
,
W. W.
, and
Moody
,
N. R.
, 1999, “
Quantitative Adhesion Measures of Multilayers Films: Part I. Indentation Mechanics
,”
J. Mater. Res.
0884-2914,
14
, pp.
3007
3018
.
49.
Kriese
,
M. D.
,
Gerberich
,
W. W.
, and
Moody
,
N. R.
, 1999, “
Quantitative Adhesion Measures of Multilayers Films: Part II. Indentation of W/Cu, W/W, Cr/W
,”
J. Mater. Res.
0884-2914,
14
, pp.
3019
3026
.
50.
Magagnin
,
L.
,
Maboudian
,
R.
, and
Carraro
,
C.
, 2003, “
Adhesion Evaluation of Immersion Plating Copper Films on Silicon by Microindentation Measurements
,”
Thin Solid Films
0040-6090,
434
, pp.
100
105
.
51.
Charalambides
,
P. G.
,
Lund
,
J.
,
Evans
,
A. G.
, and
McMeeking
,
R. M.
, 1989, “
A Test Specimen for Determining the Fracture Resistance of Bimaterial Interfaces
,”
ASME J. Appl. Mech.
0021-8936,
56
, pp.
77
82
.
52.
Dauskardt
,
R. H.
,
Lane
,
M.
,
Ma
,
Q.
, and
Krishna
,
N.
, 1998, “
Adhesion and Debonding of Multi-Layer Thin Film Structures
,”
Eng. Fract. Mech.
0013-7944,
61
, pp.
141
162
.
53.
Howard
,
S. J.
,
Tsui
,
Y. C.
, and
Clyne
,
T. W.
, 1994, “
The Effect of Residual Stresses on the Debonding of Coatings—I. A Model for Delamination at a Bimaterial Interface
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
2823
2836
.
54.
Hughey
,
M. P.
,
Morris
,
D. J.
,
Cook
,
R. F.
,
Bozeman
,
S. P.
,
Kelly
,
B. L.
,
Chakravarty
,
S. L. N.
,
Harkens
,
D. P.
, and
Stearns
,
L. C.
, 2004, “
Four-Point Bend Adhesion Measurements of Copper and Permalloy Systems
,”
Eng. Fract. Mech.
0013-7944,
71
, pp.
245
261
.
55.
Ma
,
Q.
, 1997, “
A Four Point Bending Technique for Studying Subcritical Crack Growth in Thin Films and at Interfaces
,”
J. Mater. Res.
0884-2914,
12
, pp.
840
845
.
56.
Roham
,
S.
,
Hardikar
,
K.
, and
Woytowitz
,
P.
, 2004, “
Crack Penetration and Deflection at a Bimaterial Interface in a Four-Point Bend Test
,”
J. Mater. Res.
0884-2914,
19
, pp.
3019
3027
.
57.
Scherban
,
T.
,
Sun
,
B.
,
Blaine
,
J.
,
Block
,
C.
,
Jin
,
B.
, and
Andideh
,
E.
, 2001, “
Interfacial Adhesion of Copper-Low k Interconnects
,”
Proceedings of the IEEE 2001 International Interconnect Technology Conference, 2001
, Burlingame, CA.
58.
Tsui
,
Y. C.
,
Howard
,
S. J.
, and
Clyne
,
T. W.
, 1994, “
The Effect of Residual Stresses on the Debonding of Coatings—II. An Experimental Study of a Thermally Sprayed System
,”
Acta Metall. Mater.
0956-7151,
42
, pp.
2837
2844
.
59.
Li
,
H.
,
Farmer
,
D. B.
,
Gordon
,
R. G.
,
Lin
,
Y.
, and
Vlassak
,
J.
, 2007, “
Vapor Deposition of Ruthenium From an Amidinate Precursor
,”
J. Electrochem. Soc.
0013-4651,
154
, pp.
D642
D647
.
60.
Li
,
Z.
,
Gordon
,
R. G.
,
Farmer
,
D. B.
,
Lin
,
Y.
, and
Vlassak
,
J. J.
, 2005, “
Nucleation and Adhesion of ALD Copper on Cobalt Adhesion Layers and Tungsten Nitride Diffusion Barriers
,”
Electrochem. Solid-State Lett.
1099-0062,
8
, pp.
G182
G185
.
61.
Tsui
,
T. Y.
,
McKerrow
,
A. J.
, and
Vlassak
,
J. J.
, 2005, “
Outstanding Meeting Paper: Constraint Effects on Thin Film Channel Cracking Behavior
,”
J. Mater. Res.
0884-2914,
20
, pp.
2266
2273
.
62.
Vlassak
,
J. J.
,
Lin
,
Y.
, and
Tsui
,
T. Y.
, 2005, “
Fracture of Organosilicate Glass Thin Films: Environmental Effects
,”
Mater. Sci. Eng., A
0921-5093,
391
, pp.
159
174
.
63.
Zong
,
Y.
, 2004, “
Chemical Engineering
,” Ph.D. thesis, University of Massachusetts Amherst, Amherst, MA.
64.
Zong
,
Y.
, and
Watkins
,
J. J.
, 2005, “
Deposition of Copper by the H2-Assisted Reduction of Cu(tmod)2 in Supercritical Carbon Dioxide: Kinetics and Reaction Mechanism
,”
Chem. Mater.
0897-4756,
17
, pp.
560
565
.
65.
Brantley
,
W. A.
, 1973, “
Calculated Elastic Constants for Stress Problems Associated With Semiconductor Devices
,”
J. Appl. Phys.
0021-8979,
44
, pp.
534
535
.
You do not currently have access to this content.