The present paper presents a relation between the vickers hardness HV and the loading stiffness C of instrumented vickers indentation of metal substrates. The relation is based on the fact that the nonaxisymmetry of the plastic deformation of the vickers indenter leaves the corners of the indentation imprint at the surface of metal substrates after complete unloading. This relation can transform available HV data for metals to C data. It is also shown that the strain hardening details are important in the estimation of material properties and investigators should be cautions when using power-law strain hardening in all cases.
Issue Section:
Technical Briefs
1.
O’Neill
, H.
, 1967, The Hardness of Metals and Alloys
, Chapman and Hall
, London
.2.
Kick
, F.
, 1885, Das gesetz der proportionalen widerstande and seine Anwendung
, Felix
, Leipzig
.3.
Giannakopoulos
, A. E.
, Larsson
, P. L.
, and Vestergaard
, R.
, 1994, “Analysis of Vickers Indentation
,” Int. J. Solids Struct.
0020-7683, 31
, pp. 2679
–2708
.4.
Kese
, K.
, and Li
, Z. C.
, 2006, “Semi-Ellipse Method for Accounding for the Pile-Up Contact Area During Nanoindentation With the Berkovich Indenter
,” Scr. Mater.
1359-6462, 55
, pp. 699
–702
.5.
Alcalá
, J.
, Barone
, A. C.
, and Anglada
, M.
, 2000, “The Influence of Plastic Hardening on Surface Deformation Modes Around Vickers and Spherical Indents
,” Acta Mater.
1359-6454, 48
, pp. 3451
–3464
.6.
Baxevani
, E. A.
, and Giannakopoulos
, A. E.
, 2009, “The Modified Rockwell Test: A New Probe for Mechanical Properties of Metals
,” Exp. Mech.
0014-4851, 49
, pp. 371
–382
.7.
Dao
, M.
, Chollacoop
, N.
, Van Vliet
, K. J.
, Venkatesh
, T. A.
, and Suresh
, S.
, 2001, “Computation Modelling of the Forward and Reverse Problems in Instrumented Sharp Indentation
,” Acta Mater.
1359-6454, 49
, pp. 3899
–3918
.8.
Tirupataiah
, Y.
, and Sundararajan
, G.
, 1991, “On the Constrain Factor Accociated With the Indentation of Work-Hardening Materials With a Spherical Ball
,” Metall. Trans. A
0360-2133, 22
, pp. 2375
–2384
.9.
Lu
, J.
, Suresh
, S.
, and Ravichandran
, G.
, 2003, “Dynamic Indentation for Determining the Strain Rate Sensitivity of Metals
,” J. Mech. Phys. Solids
0022-5096, 51
, pp. 1923
–1938
.10.
Schwaiger
, R.
, Moser
, B.
, Dao
, M.
, Chollacoop
, N.
, and Suresh
, S.
, 2003, “Some Critical Experiments on the Strain-Rate Sensitivity of Nanocrystalline Nickel
,” Acta Mater.
1359-6454, 51
, pp. 5159
–5172
.11.
Carlsson
, S.
, and Larsson
, P. L.
, 2001, “On the Determination of Residual Stress and Strain Fields by Sharp Indentation Testing. Part II: Experimental Investigation
,” Acta Mater.
1359-6454, 49
, pp. 2193
–2203
.12.
Williams
, R. O.
, 1962, “Stored Energy and Release Kinetics in Head Aluminum, Silver, Nickel, Iron and Zirconium After Deformation
,” Trans. Metall. Soc. AIME
0543-5722, 224
, pp. 719
–726
.13.
Bailey
, J. E.
, and Hirsch
, P. B.
, 1960, “The Dislocation Distribution, Flow Stress and Stored Energy in Cold-Worked Polycrystalline Silver
,” Philos. Mag.
1478-6435, 5
, pp. 485
–497
.14.
Baker
, I.
, and Martin
, J. W.
, 1983, “Effect of Fine Second Phase Particles on Stored Energy and Recrystallization Kinetics of Cold Rolled Copper Single Crystals
,” Met. Sci.
0306-3453, 17
, pp. 469
–474
.15.
Durst
, K.
, Backes
, B.
, Franke
, O.
, and Goeken
, M.
, 2006, “Indentation Size Effect in Metallic Materials: Modelling Strength From Pop-In to Macroscopic Hardness Using Geometrically Necessary Dislocations
,” Acta Mater.
1359-6454, 54
, pp. 2547
–2555
.16.
Aravas
, N.
, Kim
, K. S.
, and Lekie
, F. A.
, 1990, “On the Calculations of the Stored Energy of Cold Work
,” ASME J. Eng. Mater. Technol.
0094-4289, 112
, pp. 465
–470
.17.
Tabor
, D.
, 1951, The Hardness of Metals
, Clarendon
, Oxford, UK
.18.
Giannakopoulos
, A.
, 2008, unpublished results.Copyright © 2010
by American Society of Mechanical Engineers
You do not currently have access to this content.