The group of bioceramics includes hydroxyapatites, which, due to their specific properties, are widely used in biotechnology. These compounds exist in skeletons of human and animal bodies. A range of advantages of implants, which contain, among other things, hydroxyapatites, results also from the level of their porosity. Recent trends that focus on the improvement in poor strength properties of HA coatings include the introduction of solid solution of Y2O3 in ZrO2 (Khalil et al., 2007, “Consolidation and Mechanical Properties of Nanostructured Hydroxyapatite Bioceramics by High Frequency Induction Heat Sintering,” Mater. Sci. Eng., 456, pp. 368–372; Chevalier et al., 2004, “Critical Effect of Cubic Phase on Aging in 3 mol % Yttria-Stabilized Zirconia Ceramics for Hip Replacement Prothesis,” Biomaterials, 25, pp. 5539–5545; Inuzuka et al., 2004, “Hydroxyapatite-Deped Zirconia for Preparation of Biomedical Composites Ceramics,” Solid State Ionics, 172, pp. 509–513; Sung, Y. M., and Kim, D. H., 2003, “Crystallization Characteristics of Yttria-Stabilized Zirconia/Hydroxyapatite Composite Nanopowder,” J. Cryst. Growth, 254, pp. 411–417; Marciniak, J., 2002, Biomateriały, Wydawnictwo Politechniki Śląskiej, Gliwice, Poland; Park J., and Bronzino J. D., 2000, Biomaterials, CRC, Boca Raton, FL; Yoshida et al., 2006, “Fabrication of Structure-Controlled Hydroxyapatite/Zirconia Composite,” J. Eur. Ceram. Soc., 26, pp. 515–518). It seems essential to determine the resulting structural and strength properties in the aspect of further application of composites based on hydroxyapatite with the addition of the zirconia phase. The investigations involved ceramic composites based on HA with different amounts of the phase modified with ZrO2 yttrium dioxide.

1.
Inuzuka
,
M.
,
Nakamura
,
S.
, and
Kishi
,
S.
, 2004, “
Hydroxyapatite-Deped Zirconia for Preparation of Biomedical Composites Ceramics
,”
Solid State Ionics
0167-2738,
172
, pp.
509
513
.
2.
Sung
,
Y. M.
, and
Kim
,
D. H.
, 2003, “
Crystallization Characteristics of Yttria-Stabilized Zirconia/Hydroxyapatite Composite Nanopowder
,”
J. Cryst. Growth
0022-0248,
254
, pp.
411
417
.
3.
Chevalier
,
J.
,
Deville
,
S.
,
Munch
,
E.
,
Jullian
,
R.
, and
Lair
,
F.
, 2004, “
Critical Effect of Cubic Phase on Aging in 3 mol % Yttria-Stabilized Zirconia Ceramics for Hip Replacement Prothesis
,”
Biomaterials
0142-9612,
25
, pp.
5539
5545
.
4.
Khalil
,
K. A.
,
Kim
,
S.
, and
Kim
,
H. Y.
, 2007, “
Consolidation and Mechanical Properties of Nanostructured Hydroxyapatite Bioceramics by High Frequency Induction Heat Sintering
,”
Mater. Sci. Eng., A
0921-5093,
456
, pp.
368
372
.
5.
Marciniak
,
J.
, 2002,
Biomateriały
,
Wydawnictwo Politechniki Śląskiej
,
Gliwice, Poland
.
6.
Park
J.
, and
Bronzino
J. D.
, 2000,
Biomaterials
,
CRC
,
Boca Raton, FL
.
7.
Yoshida
,
K.
,
Hashimoto
,
K.
,
Toda
,
Y.
,
Udagawa
,
S.
, and
Kanazawa
,
T.
, 2006, “
Fabrication of Structure-Controlled Hydroxyapatite/Zirconia Composite
,”
J. Eur. Ceram. Soc.
0955-2219,
26
, pp.
515
518
.
8.
Chiu
,
C. Y.
,
Hsu
,
H. C.
, and
Tuan
,
W. H.
, 2007, “
Effect of Zirconia Addition on the Microstructure Evolution of Porous Hydroxyapatite
,”
Ceram. Int.
0272-8842,
33
, pp.
715
718
.
9.
Ashok
,
M.
,
Meenakshi Sundaram
,
N.
, and
Kalkura
,
S. N.
, 2003, “
Crystallization of Hydroxyapatite at Physiological Temperature
,”
Mater. Lett.
0167-577X,
57
, pp.
2066
2070
.
10.
Silva
,
V.
,
Lameiras
,
F. S.
, and
Dominguez
,
R. Z.
, 2001, “
Microstructural and Mechanical Study of Zirconia-Hydroxyapatite Composite Ceramics for Biomedical Applications
,”
Compos. Sci. Technol.
0266-3538,
1–2
, pp.
133
136
.
11.
Dudek
,
A.
, 2009, “
Assessment of Properties of HA+ZrO2 Ceramic Composites
,”
Monograph, Materials and Exploitation Problems in Modern Materials Engineering
, Czestochowa, Poland, pp.
5
26
.
12.
Dudek
,
A.
, and
Nitkiewicz
,
Z.
, 2010, “
Structural Analysis of Hydroxyapatite Sinters With Addition of ZrO2 Phase
,”
Mater. Sci. Forum
0255-5476,
638–642
, pp.
658
663
.
13.
Kon
,
M.
,
Ishikawa
,
K.
,
Miyamoto
,
Y.
, and
Asaoka
,
K.
, 1995, “
Development of Calcium Phosphate Based Functional Gradient Bioceramics
,”
Biomaterials
0142-9612,
16
, pp.
709
714
.
You do not currently have access to this content.