Temperature and strain rate effects on the mechanical behavior of commercial rephosphorized, interstitial free steel have been investigated by uniaxial tensile testing, covering temperatures ranging from 60°C to +100°C and strain rates from 1×104s1 to 1×102s1 encompassing most conditions experienced in automotive crash situations. The effect of prestraining to 3.5% with or without successive annealing at 180°C for 30 min has also been evaluated. These treatments were used to simulate pressing of the plates and the paint-bake cycle in the production of car bodies. Yield and ultimate tensile strengths, ductility including uniform and total elongation and area reduction, thermal softening effect at high strain rate, and strain rate sensitivity of stress were determined and discussed in all cases. It was found that the Voce equation [σ=σs(σsσ0)exp(ε/ε0)] can be fitted to the experimental true stress-true plastic strain data with good precision. The parameter values in this equation were evaluated and discussed. Furthermore, temperature and strain rate effects were examined in terms of thermal and athermal components of the flow stresses. Finally, a thermal activation analysis was performed.

1.
Samet-Meziou
,
A.
,
Etter
,
A. L.
,
Baudin
,
T.
, and
Penelle
,
R.
, 2008, “
Relation Between the Deformation Sub-Structure After Rolling or Tension and the Recrystallization Mechanisms of an IF Steel
,”
Mater. Sci. Eng., A
0921-5093,
473
, pp.
342
354
.
2.
Shen
,
Y. F.
,
Xue
,
W. Y.
,
Wang
,
Y. D.
,
Liua
,
Y. D.
, and
Zuo
,
L.
, 2008, “
Tensile Behaviors of IF Steel With Different Cold-Rolling Reductions
,”
Mater. Sci. Eng., A
0921-5093,
496
, pp.
383
388
.
3.
Saimoto
,
S.
, and
Diak
,
B. J.
, 2001, “
Strain Rate Sensitivity of Ultra-Low Carbon Steels
,”
Mater. Sci. Eng., A
0921-5093,
319–321
, pp.
294
298
.
4.
Saha
,
R.
, and
Ray
,
R. K.
, 2007, “
Formation of Nano- to Ultrafine Grains in a Severely Cold Rolled Interstitial Free Steel
,”
Mater. Sci. Eng., A
0921-5093,
459
, pp.
223
226
.
5.
Majta
,
J.
, and
Muszka
,
K.
, 2007, “
Mechanical Properties of Ultra Fine-Grained HSLA and Ti-IF Steels
,”
Mater. Sci. Eng., A
0921-5093,
464
, pp.
186
191
.
6.
Li
,
B. L.
,
Cao
,
W. Q.
,
Liu
,
Q.
, and
Liu
,
W.
, 2003, “
Flow Stress and Microstructure of the Cold-Rolled IF-Steel
,”
Mater. Sci. Eng., A
0921-5093,
356
, pp.
37
42
.
7.
Tomota
,
Y.
,
Lukas
,
P.
,
Harjo
,
S.
,
Park
,
J. -H.
,
Tsuchida
,
N.
, and
Neov
,
D.
, 2003, “
In Situ Neutron Diffraction Study of IF and Ultra Low Carbon Steels Upon Tensile Deformation
,”
Acta Mater.
1359-6454,
51
, pp.
819
830
.
8.
Sachdev
,
A. K.
, 1982, “
Dynamic Strain Aging of Various Steels
,”
Metall. Trans. A
0360-2133,
13A
, pp.
1793
1797
.
9.
Tsuchida
,
N.
,
Baba
,
E.
,
Nagai
,
K.
, and
Tomota
,
Y.
, 2005, “
Effects of Interstitial Solute Atoms on the Very Low Strain-Rate Deformations for an IF Steel and an Ultra-Low Carbon Steel
,”
Acta Mater.
1359-6454,
53
, pp.
265
270
.
10.
De
,
A. K.
,
Vandeputte
,
S.
, and
Cooman
,
B. C. D.
, 1999, “
Static Strain Aging Behavior of Ultra Low Carbon Bake Hardening Steel
,”
Scr. Mater.
1359-6462,
41
(
8
), pp.
831
837
.
11.
Dehghani
,
K. D.
, and
Jonas
,
J. J.
, 2000, “
Dynamic Bake Hardening of Interstitial-Free Steels
,”
Metall. Mater. Trans. A
1073-5623,
31A
, pp.
1375
1384
.
12.
Uenishi
,
A.
, and
Teodosiu
,
C.
, 2003, “
Solid Solution Softening at High Strain Rates in Si- and/or Mn-Added Interstitial Free Steels
,”
Acta Mater.
1359-6454,
51
, pp.
4437
4446
.
13.
Cahn
,
R. W.
,
Haasen
,
P.
, and
Kramer
,
E. J.
, 1992, “
Materials Science and Technology: A Comprehensive Treatment
,”
Constitution and Properties of Steels
,
F. B.
Pickering
, ed.,
VCH
,
New York
, p.
824
.
14.
Wilson
,
D. V.
, and
Russell
,
B.
, 1960, “
The Contribution of Atmosphere Locking to the Strain-Aging of Low Carbon Steels
,”
Acta Metall.
0001-6160,
8
, pp.
36
45
.
15.
Rana
,
R.
,
Singh
,
S. B.
,
Bleck
,
W.
, and
Mohanty
,
O. N.
, 2009, “
Effect of Temperature and Dynamic Loading on the Mechanical Properties of Copper-Alloyed High-Strength Interstitial-Free Steel
,”
Metall. Mater. Trans. A
1073-5623,
40
, pp.
856
866
.
16.
Serth
,
R.
, 2007,
Process Heat Transfer: Principles and Applications
,
Elsevier Academic
,
Amsterdam
, p.
755
.
17.
Batra
,
R. C.
, and
Kim
,
C. H.
, 1992, “
Analysis of Shear Banding in Twelve Materials
,”
Int. J. Plast.
0749-6419,
8
, pp.
425
452
.
18.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, Belgium, pp.
541
547
.
19.
Zhang
,
Z. L.
,
Hauge
,
M.
,
Ødegård
,
J.
, and
Thaulow
,
C.
, 1999, “
Determining Material True Stress–Strain Curve From Tensile Specimens With Rectangular Cross-Section
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
3497
3516
.
20.
Kocks
,
U. F.
, 1976, “
Laws for Work-Hardening and Low Temperature Creep
,”
ASME J. Eng. Mater. Technol.
0094-4289,
98
, pp.
76
85
.
21.
Estrin
,
Y.
, and
Mecking
,
H.
, 1984, “
A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models
,”
Acta Metall.
0001-6160,
32
, pp.
57
70
.
22.
Uenishi
,
A.
,
Teodosiu
,
C.
, and
Nesterova
,
E. V.
, 2005, “
Microstructural Evolution at High Strain Rates in Solution-Hardened Interstitial Free Steels
,”
Mater. Sci. Eng., A
0921-5093,
400–401
, pp.
499
503
.
23.
Lee
,
W. -S.
, and
Lam
,
H. -F.
, 1996, “
The Deformation Behaviour and Microstructure Evolution of High-Strength Alloy Steel at High Rate of Strain
,”
J. Mater. Process. Technol.
0924-0136,
57
, pp.
233
240
.
24.
Lins
,
J. F. C.
,
Sandim
,
H. R. Z.
,
Kestenbach
,
H. -J.
,
Raabe
,
D.
, and
Vecchio
,
K. S.
, 2007, “
A Microstructural Investigation of Adiabatic Shear Bands in an Interstitial Free Steel
,”
Mater. Sci. Eng., A
0921-5093,
457
, pp.
205
218
.
25.
Copreaux
,
J.
,
Lanteri
,
S.
, and
Schmitt
,
J. -H.
, 1993, “
Effect of Precipitation on the Development of Dislocation Substructure in Low Carbon Steels During Cold Deformation
,”
Mater. Sci. Eng., A
0921-5093,
164
, pp.
201
205
.
26.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1987, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
0021-8979,
61
(
5
), pp.
1816
1825
.
27.
Spätig
,
P.
,
Baluc
,
N.
, and
Victoria
,
M.
, 2001, On the Constitutive Behavior of the F82H Ferritic/Martensitic Steel, A309-310, pp.
425
429
.
28.
Spätig
,
P.
,
Odette
,
G. R.
,
Donahue
,
E.
, and
Lucas
,
G. E.
, 2000, “
Constitutive Behavior and Fracture Toughness Parameters of the F82H Ferritic/Martensitic Steel
,”
J. Nucl. Mater.
0022-3115,
283–287
, pp.
721
726
.
29.
Uenishi
,
A.
, and
Teodosiu
,
C.
, 2004, “
Constitutive Modelling of the High Strain Rate Behaviour of Interstitial-Free Steel
,”
Int. J. Plast.
0749-6419,
20
, pp.
915
936
.
You do not currently have access to this content.