Investigations on the effect of strain rate on tensile properties of two materials, namely, aluminum alloy 7075 T651 and IS 2062 mild steel, are presented. Experimental studies were carried out on tensile split Hopkinson pressure bar (SHPB) apparatus in the strain rate range of 54–164/s. Uncertainty analysis for the experimental results is presented. Johnson–Cook material constitutive model was applied to predict the tensile yield strength of the tested materials at different strain rates. It is observed that the tensile yield strength is enhanced compared with that at quasi-static loading. During tensile SHPB testing of the specimens, it was observed that the peak force obtained from the strain gauge mounted on the transmitter bar is lower than the peak force obtained from the strain gauge mounted on the incident bar. An explanation to this is provided based on the increase in dislocation density and necking in the tested specimens during high strain rate loading and the consequent stress wave attenuation as it propagates within the specimen. The fracture behavior and effect of high strain rate testing on microstructure changes are examined. The peak force obtained based on strain gauge mounted on the transmitter bar is lower than the peak force obtained based on strain gauge mounted on the incident bar. There is an increase in tensile yield strength at high strain rate loading compared with that at quasi-static loading for both materials. The enhancement is more for IS 2062 mild steel than that for aluminum alloy 7075 T651. In the range of parameters considered, the strength enhancement factor was up to 1.3 for aluminum alloy 7075 T651 and it was up to 1.8 for IS 2062 mild steel. Generally, there was a good match between the experimental values and the Johnson–Cook model predictions.

1.
Kolsky
,
H.
, 1949, “
An Investigation of the Mechanical Properties of Materials at Very High Rates of Loading
,”
Proc. Phys. Soc. London, Sect. B
0370-1301,
62
, pp.
676
700
.
2.
Meyers
,
M. A.
, 1994,
Dynamic Behavior of Materials
,
Wiley
,
New York
, pp.
23
65
.
3.
Sierakowski
,
R. L.
, and
Chaturvedi
,
S. K.
, 1997,
Dynamic Loading and Characterization of Fiber Reinforced Composites
,
Wiley
,
New York
, pp.
57
68
.
4.
Kuhn
,
H.
and
Medlinm
,
D.
, eds., 2000, “
Mechanical Testing and Evaluation
,”
ASM Handbook
,
ASM International
,
Materials Park, OH
, Vol.
8
, pp.
427
529
.
5.
Gama
,
B. A.
,
Lopatnikov
,
S. L.
, and
Gillespie
,
J. W.
, Jr.
, 2004, “
Hopkinson Bar Experimental Technique, A Critical Review
,”
Appl. Mech. Rev.
0003-6900,
57
, pp.
223
249
.
6.
Harding
,
J.
,
Wood
,
E. O.
, and
Campbell
,
J. D.
, 1960, “
Tensile Testing of Materials at Impact Rates of Strain
,”
J. Mech. Eng. Sci.
0022-2542,
2
, pp.
88
96
.
7.
Lindholm
,
U. S.
,
Bessey
,
R. L.
, and
Smith
,
G. V.
, 1971, “
Effect of Strain Rate on Yield Strength, Tensile Strength, and Elongation of Three Aluminium Alloys
,”
J. Mater.
0022-2453,
6
, pp.
119
133
.
8.
Nicholas
,
T.
, 1981, “
Tensile Testing of Materials at High Rates of Strain
,”
Exp. Mech.
0014-4851,
21
, pp.
177
185
.
9.
Ellwood
,
S.
,
Griffiths
,
L. J.
, and
Parry
,
D. J.
, 1982, “
A Tensile Technique for Materials Testing at High Strain Rates
,”
J. Phys. E.
0022-3735,
15
, pp.
1169
1172
.
10.
Cross
,
L. A.
,
Bless
,
S. J.
,
Rajendran
,
A. M.
,
Strader
,
E. A.
, and
Dawicke
,
D. S.
, 1984, “
New Technique to Investigate Necking in a Tensile Hopkinson Bar
,”
Exp. Mech.
0014-4851,
24
, pp.
184
187
.
11.
Ogawa
,
K.
, 1985, “
Mechanical Behaviour of Metals Under Tension-Compression Loading at High Strain Rate
,”
Int. J. Plast.
0749-6419,
1
, pp.
347
358
.
12.
Staab
,
G. H.
, and
Gilat
,
A.
, 1991, “
A Direct-Tension Split Hopkinson Bar for High Strain Rate Testing
,”
Exp. Mech.
0014-4851,
31
, pp.
232
235
.
13.
Li
,
M.
,
Wang
,
R.
, and
Han
,
M. B.
, 1993, “
A Kolsky Bar: Tension, Tension-Tension
,”
Exp. Mech.
0014-4851,
33
, pp.
7
14
.
14.
LeBlanc
,
M. M.
, and
Lassila
,
D. H.
, 1993, “
Dynamic Tensile Testing of Sheet Material Using the Split-Hopkinson Bar Technique
,”
Exp. Tech.
0732-8818,
17
, pp.
37
42
.
15.
Rodríguez
,
J.
,
Navarro
,
C.
, and
Sánchez-Gálvez
,
V.
, 1994, “
Numerical Assessment of the Dynamic Tension Test Using the Split Hopkinson Bar
,”
J. Test. Eval.
0090-3973,
22
, pp.
335
342
.
16.
Noble
,
J. P.
,
Goldthorpe
,
B. D.
,
Church
,
P.
, and
Harding
,
J.
, 1999, “
The Use of the Hopkinson Bar to Validate Constitutive Relations at High Rates of Strain
,”
J. Mech. Phys. Solids
0022-5096,
47
, pp.
1187
1206
.
17.
Itabashi
,
M.
, and
Kawata
,
K.
, 2000, “
Carbon Content Effect on High-Strain-Rate Tensile Properties for Carbon Steels
,”
Int. J. Impact Eng.
0734-743X,
24
, pp.
117
131
.
18.
Lee
,
O. S.
, and
Kim
,
M. S.
, 2003, “
Dynamic Material Property Characterization by Using Split Hopkinson Pressure Bar (SHPB) Technique
,”
Nucl. Eng. Des.
0029-5493,
226
, pp.
119
125
.
19.
Wang
,
Y.
,
Zhou
,
Y.
, and
Xia
,
Y.
, 2004, “
A Constitutive Description of Tensile Behaviour for Brass Over a Wide Range of Strain Rates
,”
Mater. Sci. Eng., A
0921-5093,
372
, pp.
186
190
.
20.
Solomos
,
G.
,
Albertini
,
C.
,
Labibes
,
K.
,
Pizzinato
,
V.
, and
Viaccoz
,
B.
, 2004, “
Strain Rate Effects in Nuclear Steels at Room and Higher Temperatures
,”
Nucl. Eng. Des.
0029-5493,
229
, pp.
139
149
.
21.
Beynon
,
N. D.
,
Jones
,
T. B.
, and
Fourlaris
,
G.
, 2005, “
Effect of High Strain Rate Deformation on Microstructure of Strip Steels Tested Under Dynamic Tensile Conditions
,”
Mater. Sci. Technol.
0267-0836,
21
, pp.
103
112
.
22.
Smerd
,
R.
,
Winkler
,
S.
,
Salisbury
,
C.
,
Worswick
,
M.
,
Lloyd
,
D.
, and
Finn
,
M.
, 2005, “
High Strain Rate Tensile Testing of Automotive Aluminum Alloy Sheet
,”
Int. J. Impact Eng.
0734-743X,
32
, pp.
541
560
.
23.
Rohr
,
I.
,
Nahme
,
H.
, and
Thoma
,
K.
, 2005, “
Material Characterization and Constitutive Modeling of Ductile High Strength Steel for a Wide Range of Strain Rates
,”
Int. J. Impact Eng.
0734-743X,
31
, pp.
401
433
.
24.
Mohr
,
D.
, and
Gary
,
G.
, 2006, “
High Strain Rate Tensile Testing Using a Split Hopkinson Pressure Bar Apparatus
,”
J. Phys. IV
1155-4339,
134
, pp.
617
622
.
25.
Naik
,
N. K.
, and
Yernamma
,
P.
, 2008, “
Mechanical Behaviour of Acrylic Under High Strain Rate Tensile Loading
,”
Polym. Test.
0142-9418,
27
, pp.
504
512
.
26.
Boyce
,
B. L.
, and
Dilmore
,
M. F.
, 2009, “
The Dynamic Tensile Behavior of Tough, Ultrahigh-Strength Steels at Strain-Rates From 0.0002 s−1 to 200 s−1
,”
Int. J. Impact Eng.
0734-743X,
36
, pp.
263
271
.
27.
Huh
,
H.
,
Lim
,
J. H.
, and
Park
,
S. H.
, 2009, “
High Speed Tensile Test of Steel Sheets for the Stress-Strain Curve at the Intermediate Strain Rate
,”
Int. J. Automot. Technol.
,
10
, pp.
195
204
.
28.
Yu
,
H.
,
Guo
,
Y.
,
Zhang
,
K.
, and
Lai
,
X.
, 2009, “
Constitutive Model on the Description of Plastic Behavior of DP 600 Steel at Strain Rate From 10−4 to 103 s−1
,”
Comput. Mater. Sci.
0927-0256,
46
, pp.
36
41
.
29.
Chen
,
Y.
,
Clausen
,
A. H.
,
Hopperstad
,
O. S.
, and
Langseth
,
M.
, 2009, “
Stress–Strain Behaviour of Aluminium Alloys at a Wide Range of Strain Rates
,”
Int. J. Solids Struct.
0020-7683,
46
, pp.
3825
3835
.
30.
Torca
,
I.
,
Aginagalde
,
A.
,
Esnaola
,
J. A.
,
Galdos
,
L.
,
Azpilgain
,
Z.
, and
Garcia
,
C.
, 2010, “
Tensile Behaviour of 6082 Aluminium Alloy Sheet Under Different Conditions of Heat Treatment, Temperature and Strain Rate
,”
Key Eng. Mater.
1013-9826,
423
, pp.
105
112
.
31.
Sil
,
D.
, and
Varma
,
S. K.
, 1993, “
The Combined Effect of Grain Size and Strain Rate on the Dislocation Substructures and Mechanical Properties in Pure Aluminum
,”
Metall. Trans. A
0360-2133,
24A
, pp.
1153
1161
.
32.
Cordero
,
R. R.
, and
Labbe
,
F.
, 2006, “
Monitoring the Strain-Rate Progression of an Aluminium Sample Undergoing Tensile Deformation by Electronic Speckle-Pattern Interferometry (ESPI)
,”
J. Phys. D
0022-3727,
39
, pp.
2419
2426
.
33.
Lee
,
W. S.
, and
Liu
,
W. C. Y.
, 2006, “
The Effects of Temperature and Strain Rate on the Dynamic Flow Behaviour of Different Steels
,”
Mater. Sci. Eng., A
0921-5093,
426
, pp.
101
113
.
34.
Lennon
,
A. M.
, and
Ramesh
,
K. T.
, 2004, “
The Influence of Crystal Structure on the Dynamic Behavior of Materials at High Temperatures
,”
Int. J. Plast.
0749-6419,
20
, pp.
269
290
.
35.
Bell
,
S.
, 2001,
A Beginner’s Guide to Uncertainty of Measurement
,
National Physical Laboratory
,
Middlesex, UK
.
36.
United Kingdom Accreditation Service Publication M3003
, 2007,
The Expression of Uncertainty and Confidence in Measurement
, 2nd ed.,
UKAS
,
Middlesex, UK
.
37.
Johnson
,
G. R.
, and
Cook
,
W. H.
, 1983, “
A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures
,”
Proceedings of the Seventh International Symposium on Ballistics
, Hague, The Netherlands, pp.
541
547
.
38.
Rule
,
W. K.
, and
Jones
,
S. E.
, 1998, “
A Revised Form for the Johnson–Cook Strength Model
,”
Int. J. Impact Eng.
0734-743X,
21
, pp.
117
131
.
39.
Zerilli
,
F. J.
, and
Armstrong
,
R. W.
, 1987, “
Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations
,”
J. Appl. Phys.
0021-8979,
61
, pp.
1816
1825
.
40.
Park
,
M.
,
Yoo
,
J.
, and
Chung
,
D. T.
, 2005, “
An Optimization of a Multi-Layered Plate Under Ballistic Impact
,”
Int. J. Solids Struct.
0020-7683,
42
, pp.
123
137
.
41.
Brar
,
N.
,
Joshi
,
V.
, and
Harris
,
B.
, 2009, “
Constitutive Model Constants for Al 7075-T651 and Al 7075-T6
,”
16th APS Topical Conference on Shock Compression of Condensed Matter
, American Physical Society, Nashville, TN.
You do not currently have access to this content.