A subregular solution thermodynamic model was employed to calculate the stacking fault energy (SFE) in Fe–Mn–Al–C–Si steels with contents of carbon 0.2–1.6 wt.%, manganese 1–35 wt.%, aluminum 1–10 wt.%, and silicon 0.5–4 wt.%. Based on these calculations, temperature-dependent and composition-dependent diagrams were developed in the mentioned composition range. Also, the effect of the austenite grain size (from 1 to 300 μm) on SFEs was analyzed. Furthermore, some results of SFE obtained with this model were compared with the experimental results reported in the literature. In summary, the present model introduces new changes that shows a better correlation with the experimental results and also allows to expand the ranges of temperatures, compositions, grain sizes, and also the SFE maps available in the literature to support the design of Fe–Mn–Al–C–Si steels as a function of the SFE.

References

1.
Song
,
W.
,
Ingendahl
,
T.
, and
Bleck
,
W.
,
2014
, “
Control of Strain Hardening Behavior in High-Mn Austenitic Steels
,”
Acta Metall. Sin.
,
27
(
3
), pp.
546
556
.
2.
Suzuki
,
H.
,
1962
, “
Segregation of Solute Atoms to Stacking Faults
,”
J. Phys. Soc. Jpn.
,
17
(
2
), pp.
322
325
.
3.
Dumay
,
A.
,
Chateau
,
J. P.
,
Allain
,
S.
,
Migot
,
S.
, and
Bouaziz
,
O.
,
2008
, “
Influence of Addition Elements on the Stacking-Fault Energy and Mechanical Properties of an Austenitic Fe–Mn–C Steel
,”
Mater. Sci. Eng. A
,
483–484
, pp.
184
187
.
4.
Dini
,
G.
,
Najafizadeh
,
A.
,
Monir-Vaghefi
,
S. M.
, and
Ueji
,
R.
,
2010
, “
Grain Size Effect on the Martensite Formation in a High-Manganese TWIP Steel by the Rietveld Method
,”
J. Mater. Sci. Technol.
,
26
(
2
), pp.
181
186
.
5.
Saeed-Akbari
,
A.
,
Imlau
,
J.
,
Prahl
,
U.
, and
Bleck
,
W.
,
2009
, “
Derivation and Variation in Composition-Dependent Stacking Fault Energy Maps Based on Subregular Solution Model in High-Manganese Steels
,”
Metall. Mater. Trans. A
,
40
(
13
), pp.
3076
3090
.
6.
Wan
,
J.
,
Chen
,
S.
, and
Xu
,
Z.
,
2001
, “
The Influence of Temperature on Stacking Fault Energy in Fe-Based Alloys
,”
Sci. China Ser. E
,
44
(
4
), pp.
345
352
.
7.
Grässel
,
O.
,
Frommeyer
,
G.
,
Derder
,
C.
, and
Hofmann
,
H.
,
1997
, “
Phase Transformations and Mechanical Properties of Fe-Mn-Si-Al TRIP-Steels
,”
J. Phys. IV France
,
07
(C
5
), pp.
C5
-
383–C5-388
.
8.
Sato
,
K.
,
Ichinose
,
M.
,
Hirotsu
,
Y.
, and
Inoue
,
Y.
,
1989
, “
Effects of Deformation Induced Phase Transformation and Twinning on the Mechanical Properties of Austenitic Fe–Mn–Al Alloys
,”
ISIJ Int.
,
29
(
10
), pp.
868
877
.
9.
Yoo
,
J. D.
, and
Park
,
K.-T.
,
2008
, “
Microband-Induced Plasticity in a High Mn–Al–C Light Steel
,”
Mater. Sci. Eng. A
,
496
(
1–2
), pp.
417
424
.
10.
Gutierrez-Urrutia
,
I.
, and
Raabe
,
D.
,
2012
, “
Multistage Strain Hardening Through Dislocation Substructure and Twinning in a High Strength and Ductile Weight-Reduced Fe–Mn–Al–C Steel
,”
Acta Mater.
,
60
(
16
), pp.
5791
5802
.
11.
Yoo
,
J. D.
,
Hwang
,
S. W.
, and
Park
,
K. T.
,
2009
, “
Origin of Extended Tensile Ductility of a Fe-28Mn-10Al-1C Steel
,”
Metall. Mater. Trans. A
,
40
(
7
), pp.
1520
1523
.
12.
Antunes
,
R. A.
, and
de Oliveira
,
M. C. L.
,
2014
, “
Materials Selection for Hot Stamped Automotive Body Parts: An Application of the Ashby Approach Based on the Strain Hardening Exponent and Stacking Fault Energy of Materials
,”
Mater. Des.
,
63
, pp.
247
256
.
13.
Raabe
,
D.
,
Springer
,
H.
,
Gutierrez-Urrutia
,
I.
,
Roters
,
F.
,
Bausch
,
M.
,
Seol
,
J. B.
,
Koyama
,
M.
,
Choi
,
P. P.
, and
Tsuzaki
,
K.
,
2014
, “
Alloy Design, Combinatorial Synthesis, and Microstructure–Property Relations for Low-Density Fe-Mn-Al-C Austenitic Steels
,”
JOM
,
66
(
9
), pp.
1845
1856
.
14.
Sawaguchi
,
T.
,
Nikulin
,
I.
,
Ogawa
,
K.
,
Sekido
,
K.
,
Takamori
,
S.
,
Maruyama
,
T.
,
Chiba
,
Y.
,
Kushibe
,
A.
,
Inoue
,
Y.
, and
Tsuzaki
,
K.
,
2015
, “
Designing Fe–Mn–Si Alloys With Improved Low-Cycle Fatigue Lives
,”
Scr. Mater.
,
99
, pp.
49
52
.
15.
Kim
,
J.
, and
De Cooman
,
B. C.
,
2011
, “
On the Stacking Fault Energy of Fe-18 Pct Mn-0.6 Pct C-1.5 Pct Al Twinning-Induced Plasticity Steel
,”
Metall. Mater. Trans. A
,
42
(
4
), pp.
932
936
.
16.
Pierce
,
D. T.
,
Bentley
,
J.
,
Jiménez
,
J. A.
, and
Wittig
,
J. E.
,
2012
, “
Stacking Fault Energy Measurements of Fe–Mn–Al–Si Austenitic Twinning-Induced Plasticity Steels
,”
Scr. Mater.
,
66
(
10
), pp.
753
756
.
17.
Smallman
,
R. E.
, and
Dobson
,
P. S.
,
1970
, “
Stacking Fault Energy Measurement From Diffusion
,”
Metall. Trans.
,
1
(
9
), pp.
2383
2389
.
18.
Schramm
,
R. E.
, and
Reed
,
R. P.
,
1975
, “
Stacking Fault Energies of Seven Commercial Austenitic Stainless Steels
,”
Metall. Trans. A
,
6
(
7
), pp.
1345
1351
.
19.
Balogh
,
L.
,
Ribárik
,
G.
, and
Ungár
,
T.
,
2006
, “
Stacking Faults and Twin Boundaries in FCC Crystals Determined by X-Ray Diffraction Profile Analysis
,”
J. Appl. Phys.
,
100
(
2
), p.
023512
.
20.
Medvedeva
,
N. I.
,
Park
,
M. S.
,
Van Aken
,
D. C.
, and
Medvedeva
,
J. E.
,
2014
, “
First-Principles Study of Mn, Al and C Distribution and Their Effect on Stacking Fault Energies in FCC Fe
,”
J. Alloys Compd.
,
582
, pp.
475
482
.
21.
Güvenç
,
O.
,
Roters
,
F.
,
Hickel
,
T.
, and
Bambach
,
M.
,
2015
, “
ICME for Crashworthiness of TWIP Steels: From Ab Initio to the Crash Performance
,”
JOM
,
67
(
1
), pp.
120
128
.
22.
Curtze
,
S.
,
Kuokkala
,
V. T.
,
Oikari
,
A.
,
Talonen
,
J.
, and
Hänninen
,
H.
,
2011
, “
Thermodynamic Modeling of the Stacking Fault Energy of Austenitic Steels
,”
Acta Mater.
,
59
(
3
), pp.
1068
1076
.
23.
Pierce
,
D.
,
Jiménez
,
J.
,
Bentley
,
J.
,
Raabe
,
D.
,
Oskay
,
C.
, and
Wittig
,
J.
,
2014
, “
The Influence of Manganese Content on the Stacking Fault and Austenite/ε-Martensite Interfacial Energies in Fe–Mn–(Al–Si) Steels Investigated by Experiment and Theory
,”
Acta Mater.
,
68
, pp.
238
253
.
24.
Allain
,
S.
,
Chateau
,
J. P.
,
Bouaziz
,
O.
,
Migot
,
S.
, and
Guelton
,
N.
,
2004
, “
Correlations Between the Calculated Stacking Fault Energy and the Plasticity Mechanisms in Fe-Mn-C Alloys
,”
Mater. Sci. Eng. A
,
387–389
(
1–2
), pp.
158
162
.
25.
Olson
,
G. B.
, and
Cohen
,
M.
,
1976
, “
A General Mechanism of Martensitic Nucleation—Part I: General Concepts and the FCC → HCP Transformation
,”
Metall. Trans. A
,
7
(
12
), pp.
1897
1904
.
26.
Charles
,
J.
,
Berghezan
,
A.
, and
Lutts
,
A.
,
1984
, “
High Manganese—Aluminum Austenitic Steels for Cryogenic Applications, Some Mechanical and Physical Properties
,”
J. Phys. Colloques
,
45
(
C1
), pp.
C1-619
C1-623
.
27.
Garcı́a de Andrés
,
C.
,
Caballero
,
F. G.
,
Capdevila
,
C.
, and
Bhadeshia
,
H. K. D. H.
,
1998
, “
Modelling of Kinetics and Dilatometric Behavior of Non-Isothermal Pearlite-to-Austenite Transformation in an Eutectoid Steel
,”
Scr. Mater.
,
39
(
6
), pp.
791
796
.
28.
Yang
,
W. S.
, and
Wan
,
C. M.
,
1990
, “
The Influence of Aluminium Content to the Stacking Fault Energy in Fe-Mn-Al-C Alloy System
,”
J. Mater. Sci.
,
25
(
3
), pp.
1821
1823
.
29.
Hillert
,
M.
, and
Jarl
,
M.
,
1978
, “
A Model for Alloying in Ferromagnetic Metals
,”
Calphad
,
2
(
3
), pp.
227
238
.
30.
Inden
,
G.
,
1994
, “
Experimental Determination of Phase Diagrams
,”
Statics and Dynamics of Alloy Phase Transformations
,
P. A.
Turchi
and
A.
Gonis
, eds.,
Springer
,
New York
, pp.
17
43
.
31.
Zhang
,
Y. S.
,
Lu
,
X.
,
Tian
,
X.
, and
Qin
,
Z.
,
2002
, “
Compositional Dependence of the Néel Transition, Structural Stability, Magnetic Properties and Electrical Resistivity in Fe–Mn–Al–Cr–Si Alloys
,”
Mater. Sci. Eng. A
,
334
(
1–2
), pp.
19
27
.
32.
Huang
,
W.
,
1989
, “
An Assessment of the Fe-Mn System
,”
Calphad
,
13
(
3
), pp.
243
252
.
33.
Jin
,
J.-E.
,
Jung
,
M.
,
Lee
,
C.-Y.
,
Jeong
,
J.
, and
Lee
,
Y.-K.
,
2012
, “
Néel Temperature of High Mn Austenitic Steels
,”
Met. Mater. Int.
,
18
(
3
), pp.
419
423
.
34.
Cotes
,
S.
,
Fernández Guillermet
,
A.
, and
Sade
,
M.
,
1999
, “
Gibbs Energy Modelling of the Driving Forces and Calculation of the FCC/HCP Martensitic Transformation Temperatures in Fe-Mn and Fe-Mn-Si Alloys
,”
Mater. Sci. Eng. A
,
273–275
, pp.
503
506
.
35.
Ishida
,
K.
,
1976
, “
Direct Estimation of Stacking Fault Energy by Thermodynamic Analysis
,”
Phys. Status Solidi (A)
,
36
(
2
), pp.
717
728
.
36.
Hickel
,
T.
,
Sandlöbes
,
S.
,
Marceau
,
R. K. W.
,
Dick
,
A.
,
Bleskov
,
I.
,
Neugebauer
,
J.
, and
Raabe
,
D.
,
2014
, “
Impact of Nanodiffusion on the Stacking Fault Energy in High-Strength Steels
,”
Acta Mater.
,
75
, pp.
147
155
.
37.
Lee
,
Y.-K.
, and
Choi
,
C.
,
2000
, “
Driving Force for γ→ε Martensitic Transformation and Stacking Fault Energy of γ in Fe-Mn Binary System
,”
Metall. Mater. Trans. A
,
31
(
2
), pp.
355
360
.
38.
Lee
,
S.-J.
,
Lee
,
Y.-K.
, and
Soon
,
A.
,
2012
, “
The Austenite/ɛ Martensite Interface: A First-Principles Investigation of the fcc Fe(1 1 1)/hcp Fe(0 0 0 1) System
,”
Appl. Surf. Sci.
,
258
(
24
), pp.
9977
9981
.
39.
Dinsdale
,
A. T.
,
1991
, “
SGTE Data for Pure Elements
,”
Calphad
,
15
(
4
), pp.
317
425
.
40.
Xiong
,
R.
,
Peng
,
H.
,
Si
,
H.
,
Zhang
,
W.
, and
Wen
,
Y.
,
2014
, “
Thermodynamic Calculation of Stacking Fault Energy of the Fe–Mn–Si–C High Manganese Steels
,”
Mater. Sci. Eng. A
,
598
, pp.
376
386
.
41.
Kaufman
,
L.
,
1977
, “
Proceedings of the Fourth Calphad Meeting Workshop on Computer Based Coupling of Thermochemical and Phase Diagram Data Held 18–22 August 1975 at the National Bureau of Standards, Gaithersburg, Maryland
,”
Calphad
,
1
(
1
), pp.
7
89
.
42.
Remy
,
L.
,
1977
, “
Temperature Variation of the Intrinsic Stacking Fault Energy of a High Manganese Austenitic Steel
,”
Acta Metall.
,
25
(
2
), pp.
173
179
.
43.
Rémy
,
L.
,
Pineau
,
A.
, and
Thomas
,
B.
,
1978
, “
Temperature Dependence of Stacking Fault Energy in Close-Packed Metals and Alloys
,”
Mater. Sci. Eng.
,
36
(
1
), pp.
47
63
.
44.
Dai
,
Q.-X.
,
Wang An-Dong
,
C. X.-N.
, and
Luo
,
X.-M.
,
2002
, “
Stacking Fault Energy of Cryogenic Austenitic Steels
,”
Chin. Phys.
,
11
(
6
), pp.
596
600
.
45.
Lehnhoff
,
G. R.
,
Findley
,
K. O.
, and
De Cooman
,
B. C.
,
2014
, “
The Influence of Silicon and Aluminum Alloying on the Lattice Parameter and Stacking Fault Energy of Austenitic Steel
,”
Scr. Mater.
,
92
, pp.
19
22
.
46.
Tian
,
X.
, and
Zhang
,
Y.
,
2009
, “
Effect of Si Content on the Stacking Fault Energy in γ-Fe–Mn–Si–C Alloys—Part I: X-Ray Diffraction Line Profile Analysis
,”
Mater. Sci. Eng. A
,
516
(
1–2
), pp.
73
77
.
47.
Tian
,
X.
, and
Zhang
,
Y.
,
2009
, “
Effect of Si Content on the Stacking Fault Energy in γ-Fe–Mn–Si–C Alloys—Part II: Thermodynamic Estimation
,”
Mater. Sci. Eng. A
,
516
(
1–2
), pp.
78
83
.
48.
Chen
,
F. C.
,
Chou
,
C. P.
,
Li
,
P.
, and
Chu
,
S. L.
,
1993
, “
Effect of Aluminium on TRIP Fe-Mn-Al Alloy Steels at Room Temperature
,”
Mater. Sci. Eng. A
,
160
(
2
), pp.
261
270
.
49.
Tian
,
X.
,
Tian
,
R.
, and
Zhang
,
Y.
,
2004
, “
Effect of Al Content on Work Hardening in Austenitic Fe-Mn-Al-C Alloys
,”
Can. Metall. Q.
,
43
(
2
), pp.
183
192
.
50.
Peng
,
X.
,
Zhu
,
D.-Y.
,
Hu
,
Z.-M.
,
Wang
,
M.-J.
,
Liu
,
L.-L.
, and
Liu
,
H.-J.
,
2014
, “
Effect of Carbon Content on Stacking Fault Energy of Fe-20Mn-3Cu TWIP Steel
,”
J. Iron Steel Res.
, Int.,
21
(
1
), pp.
116
120
.
51.
Brofman
,
P. J.
, and
Ansell
,
G. S.
,
1978
, “
On the Effect of Carbon on the Stacking Fault Energy of Austenitic Stainless Steels
,”
Metall. Trans. A
,
9
(
6
), pp.
879
880
.
52.
Abbasi
,
A.
,
Dick
,
A.
,
Hickel
,
T.
, and
Neugebauer
,
J.
,
2011
, “
First-Principles Investigation of the Effect of Carbon on the Stacking Fault Energy of Fe–C Alloys
,”
Acta Mater.
,
59
(
8
), pp.
3041
3048
.
53.
Gholizadeh
,
H.
,
Draxl
,
C.
, and
Puschnig
,
P.
,
2013
, “
The Influence of Interstitial Carbon on the γ-Surface in Austenite
,”
Acta Mater.
,
61
(
1
), pp.
341
349
.
54.
Jun
,
J.-H.
, and
Choi
,
C.-S.
,
1998
, “
Variation of Stacking Fault Energy With Austenite Grain Size and Its Effect on the MS Temperature of γ → ε Martensitic Transformation in Fe–Mn Alloy
,”
Mater. Sci. Eng. A
,
257
(
2
), pp.
353
356
.
55.
Takaki
,
S.
,
Nakatsu
,
H.
, and
Tokunaga
,
Y.
,
1993
, “
Effects of Austenite Grain Size on ε Martensitic Transformation in Fe-15mass%Mn Alloy
,”
Mater. Trans. JIM
,
34
(
6
), pp.
489
495
.
56.
Lee
,
T.
,
Koyama
,
M.
,
Tsuzaki
,
K.
,
Lee
,
Y.-H.
, and
Lee
,
C. S.
,
2012
, “
Tensile Deformation Behavior of Fe–Mn–C TWIP Steel With Ultrafine Elongated Grain Structure
,”
Mater. Lett.
,
75
, pp.
169
171
.
57.
Ueji
,
R.
,
Tsuchida
,
N.
,
Terada
,
D.
,
Tsuji
,
N.
,
Tanaka
,
Y.
,
Takemura
,
A.
, and
Kunishige
,
K.
,
2008
, “
Tensile Properties and Twinning Behavior of High Manganese Austenitic Steel With Fine-Grained Structure
,”
Scr. Mater.
,
59
(
9
), pp.
963
966
.
58.
Crampin
,
S.
,
Hampel
,
K.
,
Vvedensky
,
D.
, and
MacLaren
,
J.
,
1990
, “
The Calculation of Stacking Fault Energies in Close-Packed Metals
,”
J. Mater. Res.
,
5
(
10
), pp.
2107
2119
.
59.
Liao
,
X. Z.
,
Srinivasan
,
S. G.
,
Zhao
,
Y. H.
,
Baskes
,
M. I.
,
Zhu
,
Y. T.
,
Zhou
,
F.
,
Lavernia
,
E. J.
, and
Xu
,
H. F.
,
2004
, “
Formation Mechanism of Wide Stacking Faults in Nanocrystalline Al
,”
Appl. Phys. Lett.
,
84
(
18
), pp.
3564
3566
.
60.
Idrissi
,
H.
,
Renard
,
K.
,
Ryelandt
,
L.
,
Schryvers
,
D.
, and
Jacques
,
P. J.
,
2010
, “
On the Mechanism of Twin Formation in Fe–Mn–C TWIP Steels
,”
Acta Mater.
,
58
(
7
), pp.
2464
2476
.
61.
Kim
,
J.
,
Lee
,
S.-J.
, and
De Cooman
,
B. C.
,
2011
, “
Effect of Al on the Stacking Fault Energy of Fe–18Mn–0.6C Twinning-Induced Plasticity
,”
Scr. Mater.
,
65
(
4
), pp.
363
366
.
62.
Jin
,
J. E.
, and
Lee
,
Y. K.
,
2012
, “
Effects of Al on Microstructure and Tensile Properties of C-Bearing High Mn TWIP Steel
,”
Acta Mater.
,
60
(
4
), pp.
1680
1688
.
63.
Jeong
,
J. S.
,
Woo
,
W.
,
Oh
,
K. H.
,
Kwon
,
S. K.
, and
Koo
,
Y. M.
,
2012
, “
In situ Neutron Diffraction Study of the Microstructure and Tensile Deformation Behavior in Al-Added High Manganese Austenitic Steels
,”
Acta Mater.
,
60
(
5
), pp.
2290
2299
.
64.
Tian
,
X.
,
Li
,
H.
, and
Zhang
,
Y.
,
2008
, “
Effect of Al Content on Stacking Fault Energy in Austenitic Fe–Mn–Al–C Alloys
,”
J. Mater. Sci.
,
43
(
18
), pp.
6214
6222
.
You do not currently have access to this content.