Abstract

In this paper, the effect of porosity on the ductility of as-cast AA7075 (a commercial high-strength aluminum alloy) was investigated. The as-cast material was processed through hot upsetting, and specimens with different porosity content were achieved. These were then subjected to tensile and compression tests. It was shown that the tensile ductility exhibited a near sigmoidal dependence on the porosity content. Compressive ductility, on the other hand, was not affected by the initial porosity content. In addition, direct observations, on an X-ray microscope (XRM), enabled 3-dimensional imaging of the porosity evolution during plastic deformation. Numerical simulations using a homogenized damage model, the Gurson–Tvergaard–Needleman (GTN) approach, was used for predicting the mechanical responses. The continuum model, which accounted for the growth and coalescence of spherical voids, captured the overall experimental patterns reasonably well.

References

References
1.
Kaufman
,
J. G.
, and
Rooy
,
E. L.
,
2004
,
Aluminium Alloy Castings: Properties, Processes, and Applications
,
ASM International
,
Materials Park, OH
.
2.
Hatch
,
J. E.
,
1984
,
Aluminum: Properties and Physical Metallurgy
, 2nd ed.,
ASM International
,
Materials Park, OH
.
3.
Verlinden
,
B.
,
Driver
,
J.
,
Samajdar
,
I.
, and
Doherty
,
R.
,
2007
,
Thermo-Mechanical Processing of Metallic Materials
,
Elsevier
,
Amsterdam
.
4.
Humphreys
,
F. J.
, and
Kalu
,
P.
,
1987
, “
Dislocation Particle Interactions During High Temperature Deformation of Two-Phase Aluminum Alloys
,”
Acta Metall.
,
35
(
12
), pp.
2815
2829
. 10.1016/0001-6160(87)90281-1
5.
Manwatkar
,
S. K.
,
Srinath
,
J.
,
Narayana Murthy
,
S. V. S.
,
Ramesh Narayanan
,
P.
,
Sharma
,
S. C.
, and
Venkitakrishnan
,
P. V.
,
2016
, “
Metallurgical Analysis of Cracked AA7075 Aluminum Alloy Component Used in Control System of a Satellite Launch Vehicle
,”
J. Fail. Anal. Preven.
,
16
(
6
), pp.
1141
1149
. 10.1007/s11668-016-0203-1
6.
You
,
C. P.
,
Thompson
,
A. W.
, and
Bernstein
,
I. M.
,
1995
, “
Ductile Fracture Processes in 7075 Aluminum
,”
Metall. Mater. Trans. A.
,
26
(
2
), pp.
407
415
. 10.1007/BF02664677
7.
Jordon
,
J. B.
,
Horstemeyer
,
M. F.
,
Solanki
,
K.
,
Bernard
,
J. D.
,
Berry
,
J. T.
, and
Williams
,
T. N.
,
2009
, “
Damage Characterisation and Modelling of a 7075-T651 Aluminum Plate
,”
Mater. Sci. Eng. A.
,
527
(
1–2
), pp.
169
178
. 10.1016/j.msea.2009.07.049
8.
Quan
,
G.
,
Wang
,
F.
,
Liu
,
Y.
,
Shi
,
Y.
, and
Zhou
,
J.
,
2013
, “
Evaluation of Varying Ductile Fracture Criterion for 7075 Aluminum Alloy
,”
Trans. Nonferrous Met. Soc. China
,
23
(
3
), pp.
749
755
. 10.1016/S1003-6326(13)62525-X
9.
Toda
,
H.
,
Oogo
,
H.
,
Tsuruta
,
H.
,
Horikawa
,
K.
,
Uesugi
,
K.
,
Takeuchi
,
A.
,
Suzuki
,
Y.
, and
Kobayashi
,
M.
,
2012
, “Origin of Ductile Fracture in Aluminum Alloys,”
ICAA13 Pittsburgh
,
H.
Weiland
,
A. D.
Rollet
, and
W. A.
Cassada
, eds.,
Springer
,
Cham
.
10.
Pedersen
,
K. O.
,
Borvik
,
T.
, and
Hopperstad
,
O. S.
,
2011
, “
Fracture Mechanisms of Aluminium Alloy AA7075-T651 Under Various Loading Conditions
,”
Mater. Des.
,
32
(
1
), pp.
97
107
. 10.1016/j.matdes.2010.06.029
11.
Xing
,
M.
,
Wang
,
Y.
, and
Jiang
,
Z.
,
2013
, “
Dynamics Fracture Behaviors of Selected Aluminium Alloys Under Three Point Bending
,”
Def. Tech.
,
9
(
4
), pp.
193
200
. 10.1016/j.dt.2013.11.002
12.
Benzerga
,
A. A.
,
Besson
,
J.
, and
Pineau
,
A.
,
1999
, “
Coalescence-Controlled Anisotropic Ductile Fracture
,”
ASME J. Eng. Mater. Technol.
,
121
(
2
), pp.
221
229
. 10.1115/1.2812369
13.
Zinkham
,
R. E.
,
1968
, “
Anisotropy and Thickness Effects in Fracture of 7075-T6 and -T651 Aluminum Alloy
,”
Eng. Fract. Mech.
,
1
(
2
), pp.
275
276
. 10.1016/0013-7944(68)90003-9
14.
Fourmeau
,
M.
,
2014
, “
Characterization and Modelling of the Anisotropic Behaviour of High-Strength Aluminium Alloy
,”
Ph.D. dissertation
,
École Normale Supérieure de Cachan
,
Cachan, France
.
15.
Tvergaard
,
V.
,
1989
, “
Material Failure by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
27
, pp.
83
151
. 10.1016/S0065-2156(08)70195-9
16.
Besson
,
J.
,
2010
, “
Continuum Models of Ductile Fracture: A Review
,”
Int. J. Damage Mech.
,
19
(
1
), pp.
3
52
. 10.1177/1056789509103482
17.
Benzerga
,
A. A.
, and
Leblond
,
J. B.
,
2010
, “
Ductile Fracture by Void Growth to Coalescence
,”
Adv. Appl. Mech.
,
44
, pp.
169
305
. 10.1016/S0065-2156(10)44003-X
18.
Tvergaard
,
V.
,
1981
, “
Influence of Voids on Shear Band Instabilities Under Plane Strain Conditions
,”
Int. J. Fract.
,
17
(
4
), pp.
389
407
. 10.1007/BF00036191
19.
Tvergaard
,
V.
, and
Needleman
,
A.
,
1984
, “
Analysis of the Cup-Cone Fracture in a Round Tensile Bar
,”
Acta Metall.
,
32
(
1
), pp.
157
169
. 10.1016/0001-6160(84)90213-X
20.
Gurson
,
A. L.
,
1977
, “
Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media
,”
ASME J. Eng. Mater. Technol.
,
99
(
1
), pp.
2
15
. 10.1115/1.3443401
21.
Gologanu
,
M.
,
Leblond
,
J.
, and
Devaux
,
J.
,
1994
, “
Approximate Models for Ductile Metals Containing Nonspherical Voids—Case of Axisymmetric Oblate Ellipsoidal Cavities
,”
ASME J. Eng. Mater. Technol.
,
116
(
3
), pp.
290
297
. 10.1115/1.2904290
22.
Orlov
,
O. S.
,
Worswick
,
M. J.
,
Maire
,
E.
, and
Lloyd
,
D. J.
,
2009
, “
Simulation of Damage Percolation Within Aluminum Alloy Sheet
,”
ASME J. Eng. Mater. Technol.
,
131
(
2
), p.
021001
. 10.1115/1.3078389
23.
Parsa
,
M. H.
,
Ettehad
,
M.
,
Matin
,
P. H.
, and
Al Ahkami
,
S. N.
,
2010
, “
Experimental and Numerical Determination of Limiting Drawing Ratio of Al3105-Polypropylene-Al3105 Sandwich Sheets
,”
ASME J. Eng. Mater. Technol.
,
132
(
3
), p.
031004
. 10.1115/1.4001264
24.
Prakash
,
A.
,
Tak
,
T. N.
,
Lodh
,
A.
,
Nayan
,
N.
,
Murty
,
S. V. S. N.
,
Guruprasad
,
P. J.
, and
Samajdar
,
I.
,
2019
, “
Composition Gradient and Particle Deformed Zone: An Emerging Correlation
,”
Metall. Mater.Trans. A.
,
50
(
3
), pp.
1250
1260
. 10.1007/s11661-018-5076-3
25.
Kett
,
P. W.
,
1982
,
Motor Vehicle Science
,
Part-2, Chapman and Hall
,
London
.
26.
EN623-2
,
1993
, “
Advanced Technical Ceramics–Determination of Density and Porosity
.”
27.
Lashkari
,
O.
,
Yao
,
L.
,
Cockcroft
,
S.
, and
Maijer
,
D.
,
2009
, “
X-Ray Microtomographic Characterization of Porosity in Aluminum Alloy A356
,”
Metall. Mater. Trans. A.
,
40
(
4
), pp.
991
999
. 10.1007/s11661-008-9778-9
28.
Kalidindi
,
S. R.
,
Abusafieh
,
A.
, and
El-Danaf
,
E.
,
1997
, “
Accurate Characterization of Machine Compliance for Simple Compression Testing
,”
Exp. Mech.
,
37
(
2
), pp.
210
215
. 10.1007/BF02317861
29.
Humphreys
,
F. J.
, and
Hatherly
,
M.
,
2012
,
Recrystallization and Related Annealing Phenomena
,
Elsevier
,
New York
.
30.
Benzerga
,
A. A.
,
Leblond
,
J. B.
,
Needleman
,
A.
, and
Tvergaard
,
V.
,
2016
, “
Ductile Failure Modelling
,”
Int. J. Fract.
,
201
(
1
), pp.
29
80
. 10.1007/s10704-016-0142-6
31.
ABAQUS
,
2012
,
User’s Manual (Version 6.12)
,
Hibbit, Karlsson & Sorensen Inc.
,
Pawtucket, USA
.
32.
Bao
,
Y.
, and
Wierzbicki
,
T.
,
2004
, “
A Comparative Study on Various Ductile Crack Formation Criteria
,”
ASME J. Eng. Mater. Technol.
,
126
(
3
), pp.
314
324
. 10.1115/1.1755244
33.
Li
,
H.
,
Fu
,
M. W.
,
Lu
,
J.
, and
Yang
,
H.
,
2011
, “
Ductile Fracture: Experiments and Computations
,”
Int. J. Plast.
,
27
(
2
), pp.
147
180
. 10.1016/j.ijplas.2010.04.001
You do not currently have access to this content.