Abstract

We applied machine learning models to predict the relationship between the yield stress and the stacking fault energies landscape in high entropy alloys. The data for learning in this work were taken from phase-field dislocation dynamics simulations of partial dislocations in face-centered-cubic metals. This study was motivated by the intensive computation required for phase-field simulations. We adopted three different ways to describe the variations of the stacking fault energy (SFE) landscape as inputs to the machine learning models. Our study showed that the best machine learning model was able to predict the yield stress to approximately 2% error. In addition, our unsupervised learning study produced a principal component that showed the same trend as a physically meaningful quantity with respect to the critical yield stress.

References

References
1.
Wu
,
Y.
,
Si
,
J.
,
Lin
,
D.
,
Wang
,
T.
,
Wang
,
W. Y.
,
Wang
,
Y.
,
Liu
,
Z.
, and
Hui
,
X.
,
2018
, “
Phase Stability and Mechanical Properties of Alhfnbtizr High-Entropy Alloys
,”
Mater. Sci. Eng. A.
,
724
, pp.
249
259
. 10.1016/j.msea.2018.03.071
2.
Senkov
,
O. N.
,
Wilks
,
G. B.
,
Scott
,
J. M.
, and
Miracle
,
D. B.
,
2011
, “
Mechanical Properties of nb25mo25ta25w25 and v20nb20mo20ta20w20 Refractory High Entropy Alloys
,”
Intermetallics
,
19
(
5
), pp.
698
706
. 10.1016/j.intermet.2011.01.004
3.
Gali
,
A.
, and
George
,
E. P.
,
2013
, “
Tensile Properties of High- and Medium-Entropy Alloys
,”
Intermetallics
,
39
(
8
), pp.
74
78
. 10.1016/j.intermet.2013.03.018
4.
Yifan
,
Y.
,
Wang
,
Q.
,
Lu
,
J.
,
Liu
,
C. T.
, and
Yang
,
Y.
,
2015
, “
High-Entropy Alloy: Challenges and Prospects
,”
Mater. Today
,
19
(
12
), pp.
349
362
.
5.
Miracle
,
D. B.
,
Miller
,
J. D.
,
Senkov
,
O. N.
,
Woodward
,
C.
,
Uchic
,
M. D.
, and
Tiley
,
J.
,
2014
, “
Exploration and Development of High Entropy Alloys for Structural Applications
,”
Entropy
,
16
(
1
), pp.
494
525
. 10.3390/e16010494
6.
Yeh
,
J.-W.
,
2006
, “
Recent Progress in High-Entropy Alloys
,”
Eur. J. Control
,
31
(
6
), pp.
633
648
.
7.
Gludovatz
,
B.
,
Hohenwarter
,
A.
,
Catoor
,
D.
,
Chang
,
E. H.
,
George
,
E. P.
, and
Ritchie
,
R. O.
,
2014
, “
A Fracture-Resistant High-Entropy Alloy for Cryogenic Applications
,”
Science
,
345
(
6201
), pp.
1153
1158
.
8.
Zeng
,
Y.
,
Cai
,
X.
, and
Koslowski
,
M.
,
2019
, “
Effects of the Stacking Fault Energy Fluctuations on the Strengthening of Alloys
,”
Acta. Mater.
,
164
, pp.
1
11
.
9.
Rao
,
S. I.
,
Woodward
,
C.
,
Parthasarathy
,
T. A.
, and
Senkov
,
O.
,
2017
, “
Atomistic Simulations of Dislocation Behavior in a Model Fcc Multicomponent Concentrated Solid Solution Alloy
,”
Acta. Mater.
,
134
, pp.
188
194
.
10.
Varvenne
,
C.
,
Luque
,
A.
, and
Curtin
,
W. A.
,
2016
, “
Theory of Strengthening in Fcc High Entropy Alloys
,”
Acta. Mater.
,
118
, pp.
164
176
. 10.1016/j.actamat.2016.07.040
11.
Hunter
,
A.
,
Beyerlein
,
I. J.
,
Germann
,
T. C.
, and
Koslowski
,
M.
,
2011
, “
Influence of the Stacking Fault Energy Surface on Partial Dislocations in Fcc Metals With a Three-Dimensional Phase Field Dislocations Dynamics Model
,”
Phys. Rev. B
,
84
(
14
), p.
144108
. 10.1103/PhysRevB.84.144108
12.
Cao
,
L.
,
Hunter
,
A.
,
Beyerlein
,
I. J.
, and
Koslowski
,
M.
,
2015
, “
The Role of Partial Mediated Slip During Quasi-static Deformation of 3d Nanocrystalline Metals
,”
J. Mech. Phys. Solids.
,
78
, pp.
415
426
. 10.1016/j.jmps.2015.02.019
13.
Hunter
,
A.
,
Kavuri
,
H.
, and
Koslowski
,
M.
,
2010
, “
A Continuum Plasticity Model That Accounts for Hardening and Size Effects in Thin Films
,”
Modell. Simul. Mater. Sci. Eng.
,
18
(
4
), p.
045012
. 10.1088/0965-0393/18/4/045012
14.
Lee
,
D. W.
,
Kim
,
H.
,
Strachan
,
A.
, and
Koslowski
,
M.
,
2011
, “
Effect of Core Energy on Mobility in a Continuum Dislocation Model
,”
Phys. Rev. B
,
83
(
10
), p.
104101
. 10.1103/PhysRevB.83.104101
15.
Mura
,
T.
,
2013
,
Micromechanics of Defects in Solids
,
Springer Science & Business Media
,
New York
.
16.
Koslowski
,
M.
,
Cuitiño
,
A.
, and
Ortiz
,
M.
,
2002
, “
A Phase-Field Theory of Dislocations Dynamics, Strain Hardening and Hysteresis in Ductile Single Crystals
,”
J. Mech. Phys. Solids.
,
50
(
12
), pp.
2957
2635
. 10.1016/S0022-5096(02)00037-6
17.
Hunter
,
A.
,
Zhang
,
R.
,
Beyerlein
,
I. J.
,
Germann
,
T. C.
, and
Koslowski
,
M.
,
2013
, “
Dependence of Equilibrium Stacking Fault Width in Fcc Metals on the γ-Surface
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
2
), p.
025015
. 10.1088/0965-0393/21/2/025015
18.
Douin
,
J.
,
Pettinari-Sturmel
,
F.
, and
Coujou
,
A.
,
2007
, “
Dissociated Dislocations in Confined Plasticity
,”
Acta. Mater.
,
55
(
19
), pp.
6453
6458
. 10.1016/j.actamat.2007.08.006
19.
Martinez
,
E.
,
Marian
,
J.
,
Arsenlis
,
A.
,
Victoria
,
M. P.
, and
Perlado
,
J. M.
,
2008
, “
Atomistically Informed Dislocation Dynamics in Fcc Crystals
,”
J. Mech. Phys. Solids.
,
56
(
3
), pp.
869
895
. 10.1016/j.jmps.2007.06.014
20.
Hirth
,
J. P.
, and
Lothe
,
J.
,
1968
,
Theory of Dislocations
,
McGraw-Hill
,
New York
.
21.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
.
22.
Zhang
,
Z.
,
2016
, “
Introduction to Machine Learning: K-Nearest Neighbors
,”
Ann. Trans. Med.
,
4
(
11
).
23.
Box
,
G. E. P.
, and
Tiao
,
G. C.
,
2011
,
Bayesian Inference in Statistical Analysis
,
Wiley Classics Library
,
New York
, pp.
1
608
.
24.
Quinlan
,
J. R.
,
1986
, “
Induction of Decision Trees
,”
Mach. Learn.
,
1
(
1
), pp.
81
106
.
25.
Mason
,
L.
,
Baxter
,
J.
,
Bartlett
,
P.
, and
Frean
,
M.
,
1999
, “
Boosting Algorithms as Gradient Descent
,”
Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99
,
Cambridge, MA
,
Oct. 30–Nov. 2
, pp.
512
518
.
26.
Vovk
,
V.
,
2013
,
Kernel Ridge Regression
,
B.
Schoelkopf
,
Z.
Luo
,
V.
Vovk
, eds.,
Springer
,
Berlin/Heidelberg
, pp.
105
116
.
27.
Rasmussen
,
C. E.
, and
Williams
,
C. K. I.
,
2005
,
Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning)
,
The MIT Press
,
Cambridge, MA
.
28.
Abdi
,
H.
, and
Williams
,
L. J.
,
2010
, “
Principal Component Analysis
,”
Wiley Interdisci. Rev. Comput. Stat.
,
2
(
4
), pp.
433
459
. 10.1002/wics.101
29.
Nagelkerke
,
N. J. D.
,
1991
, “
A Note on a General Definition of the Coefficient of Determination
,”
Biometrika
,
78
(
3
), pp.
691
692
. 10.1093/biomet/78.3.691
30.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
Proceedings of the 14th International Joint Conference on Artificial Intelligence—Volume 2, IJCAI’95
,
San Francisco, CA
,
Dec. 10–14
, pp.
1137
1143
.
You do not currently have access to this content.