Abstract

In this work, the impact behavior of an alumina spherical particle on alumina coating is modeled using the smoothed particle hydrodynamics (SPH) method. The effects of impact angle (0 deg, 30 deg, and 60 deg) and velocity (100 m/s, 200 m/s, and 300 m/s) on the morphology changes of the impact pit and impacting particle, and their associated stress and energy are investigated. The results show that the combination of impact angle of 0 deg and velocity of 300 m/s produces the highest penetration depth and largest stress and deformation in the coating layer, while the combination of 100 m/s and 60 deg causes the minimum damage to the coating layer. This is because the penetration depth is determined by the vertical velocity component difference between the impacting particle and the coating layer, but irrelevant to the horizontal component. The total energy of the coating layer increases with the time, while the internal energy increases with the time after some peak values, which is due to energy transmission from the spherical particle to the coating layer and the stress shock waves. The energy transmission from impacting particle to coating layer increases with the increasing particle velocity and decreases with the increasing inclined angle. The simulated impact pit morphology is qualitatively similar to the experimental observation. This work demonstrates that the SPH method is useful to analyze the impact behavior of ceramic coatings.

References

References
1.
Zhang
,
J.
, and
Jung
,
Y.-G.
,
2018
,
Advanced Ceramic and Metallic Coating and Thin Film Materials for Energy and Environmental Applications
,
Springer
,
New York
.
2.
Zhang
,
J.
,
Guo
,
X.
,
Jung
,
Y. G.
,
Li
,
L.
, and
Knapp
,
J.
,
2017
, “
Lanthanum Zirconate Based Thermal Barrier Coatings: A Review
,”
Surf. Coat. Technol.
,
323
, pp.
18
29
. 10.1016/j.surfcoat.2016.10.019
3.
Chawla
,
N.
, and
Chawla
,
K.
,
2006
, “
Microstructure-Based Modeling of the Deformation Behavior of Particle Reinforced Metal Matrix Composites
,”
J. Mater. Sci.
,
41
(
3
), pp.
913
925
. 10.1007/s10853-006-6572-1
4.
Murugan
,
M.
,
Ghoshal
,
A.
,
Walock
,
M. J.
,
Barnett
,
B. D.
,
Pepi
,
M. S.
, and
Kerner
,
K. A.
,
2017
, “
Sand Particle-Induced Deterioration of Thermal Barrier Coatings on gas Turbine Blades
,”
Adv. Aircr. Spacecr. Sci.
,
4
(
1
), pp.
37
52
. 10.12989/aas.2017.4.1.037
5.
Liu
,
X.
,
Tang
,
P.
,
Geng
,
Q.
, and
Wang
,
X.
,
2019
, “
Effect of Abrasive Concentration on Impact Performance of Abrasive Water Jet Crushing Concrete
,”
Shock Vib.
,
2019
, pp.
1
18
. 10.1155/2019/3285150
6.
Nishinoiri
,
S.
,
Enoki
,
M.
, and
Tomita
,
K.
,
2004
, “
Evaluation of Microfracture Mode in Ceramic Coating During Thermal Cycle Test Using Laser AE Technique
,”
Mater. Trans.
,
45
(
1
), pp.
92
101
. 10.2320/matertrans.45.92
7.
Hamed
,
A. A.
,
Tabakoff
,
W.
,
Rivir
,
R. B.
,
Das
,
K.
, and
Arora
,
P.
,
2005
, “
Turbine Blade Surface Deterioration by Erosion
,”
ASME J. Turbomach.
,
127
(
3
), pp.
445
452
. 10.1115/1.1860376
8.
Fiore
,
G.
, and
Selig
,
M. S.
,
2015
, “
Optimization of Wind Turbine Airfoils Subject to Particle Erosion
,”
33rd AIAA Applied Aerodynamics Conference
,
Dallas, TX
,
June 22–26
.
9.
Lamberts
,
A. P. T. M. J.
,
2007
,
Numerical Simulation of Ballistic Impacts on Ceramic Material
,
Eindhoven University of Technology
,
Eindhoven, Netherlands
.
10.
Suzuki
,
M.
, and
Yamamoto
,
M.
,
2011
, “
Numerical Simulation of Sand Erosion Phenomena in a Single-Stage Axial Compressor
,”
J. Fluid Sci. Technol.
,
6
(
1
), pp.
98
113
. 10.1299/jfst.6.98
11.
Song
,
Y.
,
Yan
,
J.
,
Li
,
S.
, and
Kang
,
Z.
,
2019
, “
Peridynamic Modeling and Simulation of Ice Craters By Impact
,”
Comput. Model. Eng. Sci.
,
121
(
2
), pp.
465
492
. 10.32604/cmes.2019.07190
12.
Guo
,
L.
,
Deng
,
S.
, and
Yang
,
X.
,
2016
, “
Numerical Simulation of Abrasive Water jet Cutting Chemical Pipeline Based on SPH Coupled FEM
,”
Chem. Eng. Trans.
,
51
, pp.
73
78
.
13.
Hedayati
,
E.
, and
Vahedi
,
M.
,
2017
, “
Numerical Investigation of Penetration in Ceramic/Aluminum Targets Using Smoothed Particle Hydrodynamics Method and Presenting a Modified Analytical Model
,”
Comput. Model. Eng. Sci.
,
113
(
3
), pp.
295
323
.
14.
Ray
,
M.
,
Yang
,
X.
, and
Kong
,
S.-C.
,
2017
,
Simulation of Drop Impact on a Hot Wall using SPH Method with Peng-Robinson Equation of State
.
arXiv preprint arXiv:1707.03850
.
15.
Chou
,
I. M.
,
Blank
,
J. G.
,
Goncharov
,
A. F.
,
Mao
,
H. K.
, and
Hemley
,
R. J.
,
1998
, “
In Situ Observations of a High-Pressure Phase of H2O Ice
,”
Science
,
281
(
5378
), pp.
809
812
. 10.1126/science.281.5378.809
16.
Vahedi
,
K.
, and
Khazraiyan
,
N.
,
2004
, “
Numerical Modeling of Ballistic Penetration of Long Rods Into Ceramic/Metal Armors
,”
8th International LS-DYNA Users Conference
,
Detroit, MI
,
Apr. 9–10
.
17.
Johnson
,
J.
General features of Hugoniots
.
Report LANL LA, 1996. 13137
.
18.
Hallquist
,
J. O.
,
2014
,
LS-DYNA® Keyword User’s Manual: Volumes I, II, and III LSDYNA R7. 1
,
Livermore Software Technology Corporation, Livermore (LSTC)
,
Livermore, CA
,
1265
.
19.
Barsotti
,
M.
,
2010
, “
Comparison of FEM and SPH for Modeling a Crushable Foam Aircraft Arrestor bed
,”
11th International LS-DYNA Users Conference
, https://www.dynalook.com/conferences/international-conf-2010/Aerospace-2-3.pdf, Accessed October 23, 2020.
20.
Cronin
,
D. S.
,
Bui
,
K.
,
Kaufmann
,
C.
,
McIntosh
,
G.
,
Berstad
,
T.
, and
Cronin
,
D.
,
2003
, “
Implementation and Validation of the Johnson-Holmquist Ceramic Material Model in LS-Dyna
,”
Proceedings of the 4th European LS-DYNA Users Conference.
,
Ulm, Germany
,
May 22–23
.
21.
Xu
,
J.
, and
Wang
,
J.
,
2013
, “
Node to Node Contacts for SPH Applied to Multiple Fluids with Large Density Ratio
,”
Proceedings of the 9th European LS-DYNA Users Conference
,
Manchester, UK
,
June 2–4
.
22.
Yreux
,
E.
,
2018
, “
MLS-based SPH in LS-DYNA ® for Increased Accuracy and Tensile Stability
,”
15th International LS-DYNA Users Conference
.
23.
Ho and Philip
,
2002
,
LS-PRE/POST v1.0.
,
Livermore Software Technology Corporation
,
Livermore, CA
.
24.
Hallquist
,
J. O.
,
2006
,
LS-DYNA Theory Manual
, Vol.
3
,
Livermore Software Technology Corporation
,
Livermore, CA
, pp.
25
31
.
25.
Wellman
,
R. G.
, and
Nicholls
,
J. R.
,
2007
, “
A Review of the Erosion of Thermal Barrier Coatings
,”
J. Phys. D: Appl. Phys.
,
40
(
16
), pp.
R293
R305
. 10.1088/0022-3727/40/16/R01
You do not currently have access to this content.