Abstract

For a long time, only empirical models existed for creep curves in the tertiary stage. To understand the role of creep damage, including changes in the dislocation structure, cavitation, and necking, basic models that do not involve adjustable parameters have, however, recently been developed. These models were used to predict tertiary creep for copper at 75 °C. In the present paper, these models are applied to creep tests at higher temperatures (215 and 250 °C). These results demonstrate again that tertiary creep in copper is primarily controlled accelerated recovery of the dislocation structure and not by cavitation. The modeling results suggest that the role of cavitation is modest also in other creep exposed ductile alloys, which should be of importance to consider in the formulation of models for creep damage. Necking was only found to be of significance very close to rupture again in agreement with results at lower temperature.

References

References
1.
Kachanow
,
L. M.
,
1958
,
Izv. Akad. Nauk USSR, Otd. Tekh Nauk
,
38
, pp.
26
31
.
2.
Kachanow
,
L. M.
,
1974
,
Foundations of Fracture Mechanics
,
Moscow
.
3.
Rabotnov
,
Y. N.
,
1969
,
Creep Problems in Structural Members
,
North Holland, Amsterdam
.
4.
Yang
,
X.
,
Xu
,
Q.
,
Lu
,
Z. Y.
, and
Barrans
,
S.
,
2014
, “Preliminary Review of the Influence of Cavitation Behavior in Creep Damage Constitutive Equations,”
Advanced Materials Research
, Trans Tech Publications, Switzerland, pp.
46
51
.
5.
Hayhurst
,
D. R.
, and
Leckie
,
F. A.
,
1973
, “
The Effect of Creep Constitutive and Damage Relationships Upon the Rupture Time of a Solid Circular Torsion Bar
,”
J. Mech. Phys. Solids
,
21
(
6
), pp.
431
432
. 10.1016/0022-5096(73)90011-2
6.
Sandstrom
,
R.
, and
Kondyr
,
A.
,
1982
, “
Creep Deformation, Accumulation of Creep Rupture Damage and Forecasting of Residual Life for Three Mo- and CrMo-Steels
,”
VGB Kraftwerkstech.
,
62
, pp.
802
813
.
7.
Sandstrom
,
R.
, and
Kondyr
,
A.
,
1980
, “
Model for Tertiary-Creep in Mo and CrMo-Steels
,”
Proceedings—Computer Networking Symposium
,
K. J.
Miller
, and
R. F.
Smith
, eds.,
Pergamon
,
Oxford
, pp.
275
284
.
8.
Prager
,
M.
,
1995
, “
Development of the MPC Omega Method for Life Assessment in the Creep Range
,”
ASME J. Pressure Vessel Technol.
,
117
(
2
), pp.
95
103
. 10.1115/1.2842111
9.
Tan
,
F.
,
Xu
,
Q.
,
Lu
,
Z.
, and
Xu
,
D.
,
2012
, “
Literature Review on the Development of Computational Software System for Creep Damage Analysis for Weldment
,”
Adv. Mater. Res.
,
510
, pp.
490
494
. 10.4028/www.scientific.net/AMR.510.490
10.
An
,
L.
,
Xu
,
Q.
,
Xu
,
D.
, and
Lu
,
Z.
,
2012
, “
Review on the Current State of Developing of Advanced Creep Damage Constitutive Equations for High Chromium Alloy
,”
Adv. Mater. Res.
,
510
, pp.
776
780
. 10.4028/www.scientific.net/AMR.510.776
11.
Voyiadjis
,
G. Z.
, ed.,
2015
,
Handbook of Damage Mechanics
,
Springer
,
London
.
12.
Lemaître
,
J.
, and
Desmorat
,
R.
,
2010
,
Engineering Damage Mechanics: Ductile, Creep, Fatigue and Brittle Failures
,
Springer
,
Berlin
.
13.
Sandstrom
,
R.
,
2012
, “
Basic Model for Primary and Secondary Creep in Copper
,”
Acta Mater.
,
60
(
1
), pp.
314
322
. 10.1016/j.actamat.2011.09.052
14.
Sandström
,
R.
,
2016
, “
Fundamental Models for Creep Properties of Steels and Copper
,”
Trans. Indian Inst. Met.
,
69
(
2
), pp.
197
202
. 10.1007/s12666-015-0762-y
15.
Sandstrom
,
R.
, and
Andersson
,
H. C. M.
,
2008
, “
Creep in Phosphorus Alloyed Copper During Power-Law Breakdown
,”
J. Nucl. Mater.
,
372
(
1
), pp.
76
88
. 10.1016/j.jnucmat.2007.02.005
16.
Sandström
,
R.
,
2016
, “
The Role of Cell Structure During Creep of Cold Worked Copper
,”
Mater. Sci. Eng. A
,
674
, pp.
318
327
. 10.1016/j.msea.2016.08.004
17.
He
,
J.
, and
Sandström
,
R.
,
2017
, “
Basic Modelling of Creep Rupture in Austenitic Stainless Steels
,”
Theor. Appl. Fract. Mech.
,
89
, pp.
139
146
. 10.1016/j.tafmec.2017.02.004
18.
Vujic
,
S.
,
Sandstrom
,
R.
, and
Sommitsch
,
C.
,
2015
, “
Precipitation Evolution and Creep Strength Modelling of 25Cr20NiNbN Austenitic Steel
,”
Mater. High Temp.
,
32
(
6
), pp.
607
618
. 10.1179/1878641315Y.0000000007
19.
Spigarelli
,
S.
, and
Sandström
,
R.
,
2018
, “
Basic Creep Modelling of Aluminium
,”
Mater. Sci. Eng. A
,
711
, pp.
343
349
. 10.1016/j.msea.2017.11.053
20.
Cocks
,
A. C. F.
, and
Ashby
,
M. F.
,
1980
, “
Intergranular Fracture During Power-Law Creep Under Multiaxial Stresses
,”
Met. Sci.
,
14
(
8–9
), pp.
395
402
. 10.1179/030634580790441187
21.
Sui
,
F.
, and
Sandström
,
R.
,
2018
, “
Basic Modelling of Tertiary Creep of Copper
,”
J. Mater Sci.
,
53
(
9
), pp.
6850
6863.
22.
Sandström
,
R.
,
2017
, “
Formation of a Dislocation Back Stress During Creep of Copper at Low Temperatures
,”
Mater. Sci. Eng. A
,
700
, pp.
622
630
. 10.1016/j.msea.2017.06.042
23.
He
,
J.
, and
Sandström
,
R.
,
2016
, “
Modelling Grain Boundary Sliding During Creep of Austenitic Stainless Steels
,”
J. Mater. Sci.
,
51
(
6
), pp.
2926
2934
. 10.1007/s10853-015-9601-0
24.
He
,
J.
, and
Sandström
,
R.
,
2016
, “
Formation of Creep Cavities in Austenitic Stainless Steels
,”
J. Mater. Sci.
,
51
(
14
), pp.
6674
6685
. 10.1007/s10853-016-9954-z
25.
He
,
J.
, and
Sandström
,
R.
,
2016
, “
Creep Cavity Growth Models for Austenitic Stainless Steels
,”
Mater. Sci. Eng. A
,
674
, pp.
328
334
. 10.1016/j.msea.2016.08.005
26.
Burke
,
M. A.
, and
Nix
,
W. D.
,
1975
, “
Plastic Instabilities in Tension Creep
,”
Acta Metall.
,
23
(
7
), pp.
793
798
. 10.1016/0001-6160(75)90195-9
27.
Rosborg
,
B.
, and
Werme
,
L.
,
2008
, “
The Swedish Nuclear Waste Program and the Long-Term Corrosion Behaviour of Copper
,”
J. Nucl. Mater.
,
379
(
1–3
), pp.
142
153
. 10.1016/j.jnucmat.2008.06.025
28.
Sandström
,
R.
, and
Wu
,
R.
,
2013
, “
Influence of Phosphorus on the Creep Ductility of Copper
,”
J. Nucl. Mater.
,
441
(
1–3
), pp.
364
371
. 10.1016/j.jnucmat.2013.06.020
29.
Henderson
,
P. J.
, and
Sandstrom
,
R.
,
1998
, “
Low Temperature Creep Ductility of OFHC Copper
,”
Mater. Sci. Eng. A
,
246
(
1–2
), pp.
143
150
. 10.1016/S0921-5093(97)00750-8
30.
Sandström
,
R.
, and
Hallgren
,
J.
,
2012
, “
The Role of Creep in Stress Strain Curves for Copper
,”
J. Nucl. Mater.
,
422
(
1–3
), pp.
51
57
. 10.1016/j.jnucmat.2011.12.012
31.
Sandström
,
R.
,
2017
, “Fundamental for the Creep of Metals,”
Creep
,
T.
Tanski
, ed.,
InTech
,
London
.
32.
Kocks
,
U. F.
, and
Mecking
,
H.
,
2003
, “
Physics and Phenomenology of Strain Hardening: The FCC Case
,”
Prog. Mater. Sci.
,
48
(
3
), pp.
171
273
. 10.1016/S0079-6425(02)00003-8
33.
Wu
,
R.
,
Pettersson
,
N.
,
Martinsson
,
A.
, and
Sandstrom
,
R.
,
2014
, “
Cell Structure in Cold Worked and Creep Deformed Phosphorus Alloyed Copper
,”
Mater. Charact.
,
90
, pp.
21
30
. 10.1016/j.matchar.2014.01.007
34.
Hughes
,
D. A.
,
Hansen
,
N.
, and
Bammann
,
D. J.
,
2003
, “
Geometrically Necessary Boundaries, Incidental Dislocation Boundaries and Geometrically Necessary Dislocations
,”
Scr. Mater.
,
48
(
2
), pp.
147
153
. 10.1016/S1359-6462(02)00358-5
35.
Sandström
,
R.
, and
He
,
J.
,
2017
, “Survey of Creep Cavitation in FCC Metals,”
Study of Grain Boundary Character
,
W. B.
Tomasz Tanski
, ed.,
inTech
,
London
, pp.
19
42
.
36.
Dyson
,
B. F.
,
1983
, “
Continuous Cavity Nucleation and Creep Fracture
,”
Scr. Metall.
,
17
(
1
), pp.
31
37
. 10.1016/0036-9748(83)90065-0
37.
Sandström
,
R.
,
Wu
,
R.
, and
Hagström
,
J.
,
2016
, “
Grain Boundary Sliding in Copper and Its Relation to Cavity Formation During Creep
,”
Mater. Sci. Eng. A
,
651
, pp.
259
268
. 10.1016/j.msea.2015.10.100
38.
Dyson
,
B. F.
,
1976
, “
Constraints on Diffusional Cavity Growth Rates
,”
Met. Sci.
,
10
(
10
), pp.
349
353
. 10.1179/030634576790431417
39.
Rice
,
J. R.
,
1981
, “
Constraints on the Diffusive Cavitation of Isolated Grain Boundary Facets in Creeping Polycrystals
,”
Acta Metall.
,
29
(
4
), pp.
675
681
. 10.1016/0001-6160(81)90150-4
40.
Hutchinson
,
J. W.
, and
Neale
,
K. W.
,
1977
, “
Influence of Strain-Rate Sensitivity on Necking Under Uniaxial Tension
,”
Acta Metall.
,
25
(
8
), pp.
839
846
. 10.1016/0001-6160(77)90168-7
41.
Kocks
,
U. F.
,
Jonas
,
J. J.
, and
Mecking
,
H.
,
1979
, “
The Development of Strain-Rate Gradients
,”
Acta Metall.
,
27
(
3
), pp.
419
432
. 10.1016/0001-6160(79)90034-8
42.
Levy
,
A. J.
,
1986
, “
The Tertiary Creep and Necking of Creep Damaging Solids
,”
Acta Metall.
,
34
(
10
), pp.
1991
1997
. 10.1016/0001-6160(86)90258-0
43.
Lin
,
I. H.
,
Hirth
,
J. P.
, and
Hart
,
E. W.
,
1981
, “
Plastic Instability in Uniaxial Tension Tests
,”
Acta Metall.
,
29
(
5
), pp.
819
827
. 10.1016/0001-6160(81)90124-3
44.
Sui
,
F.
,
Sandström
,
R.
, and
Wu
,
R.
,
2018
, “
Creep Tests on Notched Specimens of Copper
,”
J. Nucl. Mater.
,
509
, pp.
62
72
. 10.1016/j.jnucmat.2018.06.018
45.
Sui
,
F.
, and
Sandström
,
R.
,
2016
, “
Slow Strain Rate Tensile Tests on Notched Specimens of Copper
,”
Mater. Sci. Eng. A
,
663
, pp.
108
115
. 10.1016/j.msea.2016.03.111
46.
Lim
,
R.
,
Sauzay
,
M.
,
Dalle
,
F.
,
Tournie
,
I.
,
Bonnaillie
,
P.
, and
Gourgues-Lorenzon
,
A.-F.
,
2011
, “
Modelling and Experimental Study of the Tertiary Creep Stage of Grade 91 Steel
,”
Int. J. Fract.
,
169
(
2
), pp.
213
228
. 10.1007/s10704-011-9585-y
47.
Sandström
,
R.
,
2016
, “
Influence of Phosphorus on the Tensile Stress Strain Curves in Copper
,”
J. Nucl. Mater.
,
470
, pp.
290
296
. 10.1016/j.jnucmat.2015.12.024
48.
Dieter
,
G. E.
,
1986
,
Mechanical Metallurgy
,
McGraw-Hill
,
Boston
.
49.
Orlová
,
A.
,
1991
, “
On the Relation Between Dislocation Structure and Internal Stress Measured in Pure Metals and Single Phase Alloys in High Temperature Creep
,”
Acta Metall. Mater.
,
39
(
11
), pp.
2805
2813
. 10.1016/0956-7151(91)90098-L
50.
Horiuchi
,
R.
, and
Otsuka
,
M.
,
1972
, “
Mechanism of High Temperature Creep of Aluminum-Magnesium Solid Solution Alloys
,”
Trans. Jpn. Inst. Met.
,
13
(
4
), pp.
284
293
. 10.2320/matertrans1960.13.284
51.
Ledbetter
,
H.
, and
Naimon
,
E.
,
1974
, “
Elastic Properties of Metals and Alloys. II. Copper
,”
J. Phys. Chem. Ref. Data
,
3
(
4
), pp.
897
935
. 10.1063/1.3253150
52.
Surholt
,
T.
, and
Herzig
,
C.
,
1997
, “
Grain Boundary Self-Diffusion in Cu Polycrystals of Different Purity
,”
Acta Mater.
,
45
(
9
), pp.
3817
3823
. 10.1016/S1359-6454(97)00037-2
You do not currently have access to this content.