Abstract

In this investigation, we prepared samples with five different grain misorientations by cold-rolling an X70 pipeline steel plate. The hydrogen permeation and hydrogen visualization experiments were used to compute the diffusion parameters and to reveal the diffusion path in steel samples. The dual-polarized permeation experiment allowed us to show that permeability and effective diffusion coefficient were decreased with an increase in misorientation. Hence, the total and irreversible trapping sites were also raised with the extent of deformation in the steel. On the other hand, the visualization study permitted us to show that hydrogen diffusion intensity changes within the microstructure. The diffusion intensity increases in the order of non-deformed grains, grain boundaries, and deformed grains with deformed grains as the easiest path for hydrogen diffusion.

References

References
1.
Canadas Oil and Natural Gas Producers
, “
Canadian Association of Petroleum Producers
,” https://www.cap.ca/publications-and-statistics/publications/333595, Accessed April 7, 2020.
2.
International Energy Agency
, “
World Energy Outlook
,”
2019
, https://www.iea.org/weo/, Accessed April 7, 2020.
3.
Natural Resources Canada
, “
Frequently Asked Questions (FAQs) Concerning Federally-Regulated Petroleum Pipelines in Canada
,” https://www.nrcan.gc.ca/energy/energy-sources-distribution/pipelines/frequently-asked-questions-faqs-concerning-federally-regulated-petroleum-pipelines-canada/5893, Accessed on 1 March 2020.
4.
Nace
,
T.
,
Plante
,
L.
, and
Browning
,
J.
Global Energy Monitor
,” 2019, https://globalenergymonitor.org/pipeline-bubble/, Accessed March 1, 2020.
5.
Canadian Association of Petroleum Producers
,
2018
,
A Global Vision for the Future of Canadian oil and Natural Gas
,
Canadian Association of Petroleum Producers
,
Calgary
.
6.
Petak
,
K.
,
Manik
,
J.
, and
Griffith
,
A.
Interstate Natural Gas Association of America
,” 18 June 2018, https://www.ingaa.org/Foundation/FDNreports/Midstream2035.aspx, Accessed March 15, 2020.
7.
National Energy Board, Canada
,
2004
,
A Comparitive Analysis of Pipeline Safety Performance
,
NEB
,
Calgary
.
8.
P. a. H. M. S. Administration
. “
Pipeline Incident 20 Year Trends
,” 2020, https://www.phmsa.dot.gov/data-and-statistics/pipeline/pipeline-incident-20-year-trends, Accessed April 7, 2020.
9.
Canadian Energy Pipeline Association
,
2015
,
Pipeline Industry Performance Report
,
Canadian Energy Pipeline Association
,
Calagary, AB
.
10.
National Energy Board
,
2011
,
A Comparative Analysis of Pipeline Performance
,
NEB
,
Calgary
.
11.
Kittel
,
J.
,
Smanio
,
V.
,
Fregonese
,
M.
,
Garnier
,
L.
, and
Lefebvre
,
X.
,
2010
, “
Hydrogen Induced Cracking (HIC) Testing of Low Alloy Steel in Sour Environment: Impact of Time of Exposure on the Extent of Damage
,”
Corros. Sci.
,
52
(
4
), pp.
1386
1392
. 10.1016/j.corsci.2009.11.044
12.
Findley
,
K. O.
,
O'Brien
,
M. K.
, and
Nako
,
H.
,
2015
, “
Critical Assessment 17: Mechanisms of Hydrogen Induced Cracking in Pipeline Steels
,”
Mater. Sci. Technol.
,
31
(
14
), pp.
1673
1680
. 10.1080/02670836.2015.1121017
13.
Krom
,
A. H.
, and
Bakker
,
A.
,
2000
, “
Hydrogen Trapping Models in Steel
,”
Metall. Mater. Trans. B
,
31
(
6
), pp.
1475
1482
. 10.1007/s11663-000-0032-0
14.
Pressouyre
,
G.
, and
Bernstein
,
I.
,
1981
, “
An Example of the Effect of Hydrogen Trapping on Hydrogen Embrittlement
,”
Metall. Trans. A
,
12
(
5
), pp.
835
844
. 10.1007/BF02648348
15.
Mohtadi-Bonab
,
M. A.
,
Eskandari
,
M.
, and
Szpunar
,
J. A.
,
2015
, “
Texture, Local Misorientation, Grain Boundary and Recrystallization Fraction in Pipeline Steels Related to Hydrogen Induced Cracking
,”
Mater. Sci. Eng. A
,
620
, pp.
97
106
. 10.1016/j.msea.2014.10.009
16.
Lee
,
J.-Y.
, and
Lee
,
S.
,
1986
, “
Hydrogen Trapping Phenomena in Metals With B.C.C. and F.C.C. Crystals Structures by the Desorption Thermal Analysis Technique
,”
Surf. Coat. Technol.
,
28
(
3–4
), pp.
301
314
. 10.1016/0257-8972(86)90087-3
17.
Pressouyre
,
G.
, and
Bernstein
,
I.
,
1978
, “
A Quantitative Analysis of Hydrogen Trapping
,”
Metall. Mater. Trans. A
,
9
(
11
), pp.
1571
1580
. 10.1007/BF02661939
18.
Villalba
,
E.
, and
Atrens
,
A.
,
2008
, “
SCC of Commercial Steels Exposed to High Hydrogen Fugacity
,”
Eng. Failure Anal.
,
15
(
6
), pp.
617
641
. 10.1016/j.engfailanal.2007.10.004
19.
Mohtadi-Bonab
,
M.
,
Szpunar
,
J.
, and
Razavi-Tousi
,
S.
,
2013
, “
Hydrogen Induced Cracking Susceptibility in Different Layers of a Hot Rolled X70 Pipeline Steel
,”
Int. J. Hydrogen Energy
,
38
(
31
), pp.
13831
13841
. 10.1016/j.ijhydene.2013.08.046
20.
Luu
,
W.
, and
Wu
,
J. K.
,
1995
, “
Effects of Sulfide Inclusion on Hydrogen Transport in Steels
,”
Mater. Lett.
,
24
(
1–3
), pp.
175
179
. 10.1016/0167-577X(95)00068-2
21.
Pérez
,
T.
, and
García
,
J. O.
,
1982
, “
Direct Observation of Hydrogen Evolution in the Electron Microscope Scale
,”
Scr. Metall.
,
16
(
2
), pp.
161
164
. 10.1016/0036-9748(82)90377-5
22.
Louthan
,
M.
, and
Derrick
,
R.
,
1975
, “
Hydrogen Transport in Austenitic Stainless Steel
,”
Corros. Sci.
,
15
(
6–12
), pp.
565
577
. 10.1016/0010-938X(75)90022-0
23.
Perng
,
T.-P.
, and
Altstetter
,
C.
,
1986
, “
Effects of Deformation on Hydrogen Permeation in Austenitic Stainless Steels
,”
Acta Metall.
,
34
(
9
), pp.
1771
1781
. 10.1016/0001-6160(86)90123-9
24.
Ha
,
H. M.
,
Ai
,
J.-H.
, and
Scully
,
J. R.
,
2014
, “
Effects of Prior Cold Work on Hydrogen Trapping and Diffusion in API X-70 Line Pipe Steel During Electrochemical Charging
,”
Corrosion
,
70
(
2
), pp.
166
184
. 10.5006/0990
25.
Eeckhout
,
E. V. d.
,
Laureys
,
A.
,
Ingelgem
,
Y. V.
, and
Verbeken
,
K.
,
2017
, “
Hydrogen Permeation Through Deformed and Heat-Treated Armco Pure Iron
,”
Mater. Sci. Technol.
,
33
(
13
), pp.
1515
1523
. 10.1080/02670836.2017.1342015
26.
Chen
,
S. S.
,
Wu
,
T. I.
, and
Wu
,
J.
,
2004
, “
Effects of Deformation on Hydrogen Degradation in a Duplex Stainless Steel
,”
J. Mater. Sci.
,
39
(
1
), pp.
67
71
. 10.1023/B:JMSC.0000007729.14528.a8
27.
Gerland
,
M.
,
Lefranc
,
P.
,
Doquet
,
V.
, and
Sarrazin-Baudoux
,
C.
,
2009
, “
Deformation and Damage Mechanisms in an α/β 6242 Ti Alloy in Fatigue, Dwell-Fatigue and Creep at Room Temperature. Influence of Internal Hydrogen
,”
Mater. Sci. Eng. A
,
507
(
1–2
), pp.
132
143
. 10.1016/j.msea.2008.11.045
28.
Horikawa
,
K.
, and
Yoshida
,
K.
,
2004
, “
Visualization of Hydrogen Distribution in Tensile-Deformed Al-5%Mg Alloy Investigated by Means of Hydrogen Microprint Technique With EBSP Analysis
,”
Mater. Trans.
,
45
(
2
), pp.
315
318
. 10.2320/matertrans.45.315
29.
Hoh
,
B.
,
1996
, “
Quantitative Examination of Segregation in Slabs for the Production of Sour Service Linepipe
,”
International Pipeline Conference
,
June 9–13
,
Calgary, AB
, pp.
167
175
.
30.
International Organization for Standardization
,
2014
,
Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique
,
International Standards Organization
,
Switzerland
.
31.
Manolatos
,
P.
, and
Jerome
,
M.
,
1996
, “
A Thin Palladium Coating on Iron for Hydrogen Permeation Studies
,”
Electrochim. Acta
,
41
(
3
), pp.
359
365
. 10.1016/0013-4686(95)00379-7
32.
Devanathan
,
M. A. V.
, and
Stachurski
,
Z.
,
1962
, “
The Adsorption and Diffusion of Electrolytic Hydrogen in Palladium
,”
Proc. R. Soc. A
,
270
(
1340
), pp.
90
102
. 10.1098/rspa.1962.0205
33.
Thomas
,
A.
, and
Szpunar
,
J. A.
,
2020
, “
Hydrogen Diffusion and Trapping in X70 Pipeline Steel
,”
Int. J. Hydrogen Energy
,
45
(
3
), pp.
2390
2404
. 10.1016/j.ijhydene.2019.11.096
34.
Ichitani
,
K.
,
Kuramoto
,
S.
, and
Kanno
,
M.
,
2003
, “
Quantitative Evaluation of Detection Efficiency of the Hydrogen Microprint Technique Applied to Steel
,”
Corros. Sci.
,
45
(
6
), pp.
1227
1241
. 10.1016/S0010-938X(02)00218-4
35.
Tavitas
,
R. J. F.
,
Garcés
,
R. S.
, and
Cortéz
,
V. H. L.
,
2015
, “Hybrid Laser—Arc Welding Applied in Longitudinal Joints for Hydrocarbon Conduction Pipes,”
Structural and Chemical Characterization of Metals, Alloys, and Compounds
,
A. C.
Cuevas
,
R. P.
Campos
, and
R. E.
Muñoz
, eds.,
May
11
,
Cambridge University Press
,
Cancún, MX
, Vol.
1766
, pp.
45
52
.
36.
Alipooramirabad
,
H.
,
Ghomashchi
,
R.
,
Paradowska
,
A.
, and
Reid
,
M.
,
2016
, “
Residual Stress- Microstructure- Mechanical Property Interrelationships in Multipass HSLA Steel Welds
,”
J. Mater. Process. Technol.
,
231
, pp.
456
467
. 10.1016/j.jmatprotec.2016.01.020
You do not currently have access to this content.